CFD Analysis of Heat Transfer Characteristics of Helical Coil Heat Exchangers

2015 ◽  
Vol 787 ◽  
pp. 172-176
Author(s):  
R. Maradona ◽  
S. Rajkumar

The applications of heat exchangers are vast and the enhancement of heat transfer and compact size are the key factors for designing the heat exchangers in order to achieve energy savings. In the field of tubular heat exchangers one of the possible ways for reducing the space occupied by the exchanger is by bending tube axis in helical shape. This option is particularly suitable when construction simplicity is needed and the geometry of the place in which the exchanger has to be housed is the cylindrical one. In this paper, an attempt is made to enhance the heat transfer rate without application of any external power. This is achieved by providing the helical tube in tubes. The parameters influencing the nature of flow in a helical coil heat exchanger are the tube geometry namely pitch coil diameter, pitch and tube diameter. CFD analysis is carried out to study these geometry effects on heat transfer and hydraulic characteristics by varying Reynolds number (hot fluid). The CFD results of velocity and temperature distribution in the heat exchanger are used to estimate the Nusselt number and heat transfer coefficient. This helps to arrive at an optimum value of Reynolds number and Nusselt number for the corresponding tube-to-coil diameter ratios.

Author(s):  
Rakesh Kumar

Abstract: Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide the excellent thermal performance in helical coil heat exchangers. Research studies on heat transfer enhancement have gained serious momentum during recent years and have been proposed many techniques by different research groups [1]. A fluid with higher thermal conductivity has been developed to increase the efficiency of heat exchangers. The dispersion of 1-100nm sized solid nanoparticles in the traditional heat transfer fluids, termed as nanofluids, exhibit substantial higher convective heat transfer than that of traditional heat transfer fluids. Nanofluid is a heat transfer fluid which is the combination of nanoparticles and base fluid that can improve the performance of heat exchanger systems. In this present paper the efforts are made to understand that how to compare the heat transfer rate in Copper helically coiled tube and squared coiled tube heat exchanger using Zinc Oxide and Titanium Dioxide Nano fluid by studying research papers of various authors. Keywords: Helical Coil, Nano-fluid, Heat Exchanger, CFD, Pressure Drop, Temperature Distribution.


2016 ◽  
Vol 37 (4) ◽  
pp. 137-159 ◽  
Author(s):  
Rafał Andrzejczyk ◽  
Tomasz Muszyński

Abstract The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.


Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.


2021 ◽  
Vol 6 (2) ◽  
pp. 41-52
Author(s):  
Mohd Rahimie Md Noor ◽  
Nur Syafiqah Hidayah Mohd Fauzi ◽  
Siti Nur Fadhilah Masrom ◽  
Mohd Azry Abdul Malek ◽  
Muhammad Firdaus Mustapha ◽  
...  

Heat exchangers are tools used to transfer thermal energy between two fluids (liquid or gas) by convection and conduction at different level of temperatures. Heat exchangers are the common equipment and employed in many different applications because of ability to withstand high temperatures and compactness. There are no intermixing or leakage occurred between two fluids during the heat transfer process as fluids are separated by walls of heat exchanger. The main objective of this project is to determine the heat exchanger effectiveness in heat transfer performance. This will be done by investigating the performance of five different angles of heat exchanger which are 150,300, 450, 600 and 750. The effectiveness of heat exchanger depends on the convection heat transfer coefficient of the fluid. Besides that, this project also aims to develop some parameters such as Nusselt number, Reynolds number and Prandtl number for evaluating the heat transfer. It is found that the Nusselt Number at angle of 150 is lower compared to angle of 750. Meanwhile, Reynolds number for angle 150 is higher than angle 750 which means that the type of flow produced by angle 150 is turbulent flow while for 750 angle is laminar flow. Hence, the overall result of this project proved that 150 is the best angle for heat exchanger in chimney because of higher velocity, higher volume flow rate, higher density of gas and higher LMTD. The relationship between Nusselt number and Reynolds number between different angles can be observed by plotting the graph using Maple Software.


Author(s):  
Ehsan M. Languri ◽  
Aly H. Shaaban ◽  
Minsuk Kong ◽  
Jorge L. Alvarado

Heat transfer analysis of microencapsulated phase change material (MCPM) slurry flowing through a helical coil heat exchanger was carried out numerically. MPCM slurry at different mass fractions with known thermal and physical properties was chosen as heat transfer fluid (HTF). MPCM slurries can carry significantly higher thermal load when the PCM undergoes phase change within a specified temperature range. However, little is known as to how MPCM behave in helical coil heat exchangers. Helical coil heat exchangers are being used widely in many industrial applications including air conditioning systems due to their compactness and high thermal effectiveness. Enhancing the heat transfer rate of coil heat exchanger by using MPCM slurry without altering the existing parameters of coil heat exchangers such as shell diameter should lead to energy savings due to reductions in HTF pumping energy demands at identical heat loads. The ultimate goal of this study is to show a significant enhancement in heat transfer when MPCM slurry is pumped through helical coil heat exchangers. Unlike traditional HTF used in helical coil heat exchangers, the proposed MPCM slurry could alter the flow structure and the internal convection by inducing and enhancing the formation of secondary flows, as a result of phase change in the microencapsulated phase change material. Specifically, a three dimensional numerical study was undertaken to understand the effects of the helical coil heat exchanger geometry and the HTF flow characteristics on heat transfer enhancement. Baseline numerical simulations were conducted using water as HTF in order to compare with MPCM slurry numerical results. The numerical model was solved based on the finite volume method. The temperature-dependent properties of MPCM slurry and boundary conditions were considered. The promising results of this numerical study demonstrate the importance of formulated HTF and the geometry of the heat exchanger on the heat transfer enhancement and energy savings.


Author(s):  
M. R. Salem ◽  
K. M. Elshazly ◽  
R. Y. Sakr ◽  
R. K. Ali

The present work introduces an experimental study of horizontal shell and coil heat exchangers. Characteristics of the convective heat transfer in this type of heat exchangers and the friction factor for fully developed flow through their helically coiled tube (HCT) were investigated. The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid-operating conditions. Here, five heat exchangers of counterflow configuration were constructed with different HCT torsions (λ) and tested at different mass flow rates and inlet temperatures of both sides of the heat exchangers. In total, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of both sides of the heat exchangers and the overall heat transfer coefficient increase by decreasing coil torsion. At lower and higher HCT-side Reynolds number (Ret), the average increase in the HCT-side average Nusselt number (Nu¯t) is of 108.7% and 58.6%, respectively, when λ decreases from 0.1348 to 0.0442. While, at lower and higher shell-side Reynolds number (Resh), the average increase in the shell-side average Nusselt number (Nu¯sh) is of 173.9% and 69.5%, respectively, when λ decreases from 0.1348 to 0.0442. In addition, a slight increase of 6.4% is obtained in the HCT Fanning friction factor (fc) at lower Ret when λ decreases from 0.1348 to 0.0442, and this effect vanishes with increasing Ret. Furthermore, correlations for Nu¯t, Nu¯sh, and fc are obtained.


2017 ◽  
Vol 5 (4) ◽  
pp. 1752-1757
Author(s):  
Priyanshu Dradhomar ◽  
◽  
Subhashini Verma ◽  
Vikas Singh ◽  
Pallavi Dradhomar ◽  
...  

Author(s):  
Sarbadaman Dasgupta ◽  
Faisal A. Siddiqui ◽  
Md. Abdul Quaiyum ◽  
Serena A. Al-Obaidi ◽  
Amir Fartaj

Researchers are moving forward to provide energy efficient, compact and inexpensive heat exchangers. Main focus is being deployed to the heat exchangers comprising narrow size flow channels such as mesochannels and microchannels for their augmented heat transfer characteristics, compactness and energy efficiency compared to conventional heat exchangers with the same heat exchange duty. Air to water cross-flow heat exchangers are encountered in many engineering applications. While numerous investigations were performed to characterize the heat transfer and fluid flow in mesochannels and microchannels, the literatures examining the air side heat transfer and flow behaviors in the cross-flow mesochannel heat exchangers are inadequate. In the current study air side heat transfer and flow characteristics of cross-flow cooling of air through a multiport slab mesochannel heat exchanger were investigated experimentally. The major components of experimental setup are the closed loop integrated thermal wind tunnel, liquid circulation network with heat add or removal system arrangement, sets of measuring instruments, data acquisition system, and multiport slab mesochannel heat exchanger as the test specimen. The multiport slab mesochannel heat exchanger consists of 15 finned aluminum slabs with 304 mm × 304 mm size frontal area and 100 mm flow length across the direction of air flow. Each slab contains 68 flow channels of 1mm circular diameter. Cold deionized (DI) water at a constant mass flow rate (0.0196 kg/s) was forced to flow through the mesochannels whereas the hot air at different velocities was allowed to pass through the finned passages of the heat exchanger core in cross-flow orientation. The inlet air temperature was changed in three levels (28°C, 33°C and 38°C) while maintaining a constant inlet water temperature of 8° C. The air velocity was varied in four steps (3.5m/s, 5.5m/s, 7.5m/s, and 9.5 m/s) at each temperature level. In the present study heat transfer and fluid flow key parameters such as heat transfer rate (Q˙), number of transfer units (NTU), effectiveness (ε), overall thermal resistance (Rtotal), and the air side Nusselt number (Nua) as well as Reynolds number (Rea) were examined in the region of the air side Reynolds number at the range of 972–2758, with a constant water side Reynolds number of 135. Heat balance performance of the experiment was found to be 4% for all operating conditions. The air side thermal resistance was found to be dominating over the overall thermal resistance ranging from 85% to 91% of the overall thermal resistance. The effect of air side Reynolds number on air side Nusselt number was examined and a general correlation of Nusselt number with Reynolds number was obtained as Nua = 0.3972(Rea)0.3766. The Nusselt number value was found to be higher in comparison with other research works for the corresponding Reynolds number range. The multiport mesochannel flat slab has offered uniform temperature distribution into the core. This uniform temperature distribution leads to higher heat transfer over standalone inline flow tube bank.


Sign in / Sign up

Export Citation Format

Share Document