A Promising Method for Improving Wear Resistance of Metal Cutting Tools

2015 ◽  
Vol 788 ◽  
pp. 325-329
Author(s):  
Alexander G. Ovcharenko ◽  
Andrey Yu. Kozlyuk ◽  
Mikhail O. Kurepin

Abstract. A promising method for improving wear resistance of metal cutting tools including pre-heating and a subsequent impact of the pulsed magnetic field of high intensity on the cutting tool is proposed. The experimental setup and methods of research are described. Experimental studies of surfaces of carbide reversible cutting plates of the VK8, T15K6 alloy and drills of high speed steel R6M5 to assess the effectiveness of the proposed method were performed. An increase in wear resistance of cutting tools made of the T15K6 hard-alloy plates by 30% and made of the VK8 alloy plates by 13% was revealed while wear resistance of drills made of steel R6M5 increased on average by 58% The proposed method can be of practical interest for hardening the surface of other types of tools and machine parts for further experimental verification.

Author(s):  
N.V. Ferdinandov ◽  
D.D. Gospodinov

Purpose: To present a technology for hardfacing of metal-cutting tools by arc welding in vacuum. Design/methodology/approach: The experiments were carried out using an installation for arc welding in vacuum. Objects of research were metal cutting tools (lathe knives), made of high-speed steel HS6-5-2 on a base metal of structural steel C45. The structure, hardness and wear resistance after hardfacing and after a triple tempering at 560°C have been determined. The heat resistance of the obtained instruments has been examined. Findings: The microstructural analysis showed that the structure of the built-up layer consisted of martensite, retained austenite and carbides. This was confirmed by the values of measured hardness after welding which were about 63-64 HRC. The triple tempering led to an increase in hardness by 3-4 HRC. It was found that the built-up layers (cutting edges of tools) retain their hardness (HRC=63-65) up to a temperature of 615-620°C, which shows that the heat resistance of the build-up layers was similar to that of the hardened and tempered tools of the same steel. The built-up work-pieces (excluding heat treated) and the reference knife showed the same cutting qualities at cutting speeds in the range of 55 to 120 m/min. It has been found that triple tempering after hardfacing led to increased wear resistance and consequently the durability of the tool also increased due to the higher hardness. Practical implications: The practical application is related to the production of metalcutting tools. Originality/value: The proposed technological method allows to produce defects free built-up layers. The cutting properties of the built-up in vacuum layers are comparable to or better than those of new tools made of steel HS 6-5-2.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012015
Author(s):  
M Sh Migranov ◽  
A M Migranov ◽  
S R Shekhtman

Abstract The paper presents the results of a study of one of the ways to increase the wear resistance of “duplex” coatings applied to cutting tools, which are due to preliminary diffusion saturation of the tool surface with nitrogen (known as ion nitriding) followed by physical deposition of a hard coating (Ti, Cr) N. The proposed coating also contains an additional layer with an impurity of ions, deposited on a preliminary nitrided surface of high speed steel before the deposition of a hard coating. Tests were carried out to evaluate the effect of these modified layers on the tool life of the HSS tool. The greatest wear resistance after "triplex" - treatment was achieved during ion implantation of titanium into a pre-nitrided surface. The coefficient of friction of the modified layer was studied at different contact temperatures. Ionic mixing contributes to the appearance of a thin surface layer with an amorphous-like structure, which prolongs the stage of normal wear, which significantly increases the tool life as a result of the self-organization process.


2013 ◽  
Vol 594-595 ◽  
pp. 1117-1121
Author(s):  
Мazhyn Skakov ◽  
Bauyrzhan Rakhadilov ◽  
Merey Rakhadilov

In this work the influence of electrolytic-plasma nitriding on the abrasive wear-resistance of R6M5 high-speed steel were under research. We registered that after electrolytic-plasma nitriding on R6M5 steel surface modified layer is formed with 20-40 μm thickness and with increased microhardness of 9000-12200 MPa. Testing mode for the nitrided samples high-speed steel on abrasive wear developed. It is established, that electrolyte-plasma nitriding allows to increase wear-resistance of R6M5 steel surface layer comparing to original. It was determined that abrasive wear-resistance of R6M5 steel surface layer is increased to 25% as a result of electrolytic plasma nitriding. Thus, studies have demonstrated the feasibility and applicability of electrolytic-plasma nitriding in order to improve cutting tools work resource, working under friction and wear conditions.


Alloy Digest ◽  
1984 ◽  
Vol 33 (11) ◽  

Abstract VascoDyne is a high-speed steel for the metal-cutting industry. This steel is designed to give equivalent or better performance than many grades of high-speed steel now in use and at a lower cost. VascoDyne provides improved hot hardness and wear resistance over conventional high-speed steels such as AISI Types, M1, M7 and M10. VascoDyne is recommended as an excellent alternate to the traditional high-speed steels used in cutting-tool applications. This datasheet provides information on composition and hardness. It also includes information on forming, heat treating, and machining. Filing Code: TS-431. Producer or source: Teledyne Vasco.


2012 ◽  
Vol 32 (2) ◽  
pp. 186-188 ◽  
Author(s):  
V. M. Kishurov ◽  
V. N. Ippolitov ◽  
M. V. Kishurov

2012 ◽  
Vol 32 (1) ◽  
pp. 98-101
Author(s):  
V. M. Kishurov ◽  
V. N. Ippolitov ◽  
M. V. Kishurov ◽  
M. Yu. Nekrasova

2010 ◽  
Vol 139-141 ◽  
pp. 344-347
Author(s):  
Guang Ming Li ◽  
Li Yan ◽  
Shu Min Yu

This paper mainly discusses the technique of using quenching at 1000°C and tempering at 650°C for 2 hours to replace the heat treatment process of quenching at 1225°C and tempering at 560°C for 1 hour for three times.Due to the old heat treatment process is traditional multifarious waste energy and relatively backward.The experiment results prove that after the new treatment using the W6Mo5Cr4V2 high-speed steel to make cutting tools such as cutters, drill, taps and so on. It aslo achieves better abrasion resistance and ductility. This meeting the objective of improving the wear resistance, toughness, lifespan enhancement and energy conservation.It opens up a new way of simple and energy saving for W6Mo5Cr4V2 high-speed steel heat treatment process.The material of W6Mo5Cr4V2 high-speed steel has certain value to research.


2019 ◽  
Vol 40 (5) ◽  
pp. 392-395 ◽  
Author(s):  
G. V. Ratkevich ◽  
L. E. Afanasieva ◽  
I. A. Smolyakova ◽  
M. V. Novoselova

2019 ◽  
Vol 72 (6) ◽  
pp. 729-733
Author(s):  
Yujie Fan ◽  
Feng Xue ◽  
Yuankai Zhou ◽  
Yibin Dai ◽  
Pengfei Cui ◽  
...  

Purpose As a key basic component used in machining, high-speed steel (HSS) tools often prone to wear and failure during machining. Therefore, the purpose of this study is to adopt a suitable approach to improve the stability of the cutting force, the service life and the wear resistance. Design/methodology/approach Laser shock processing (LSP) was used to process the tool rake face and the tribological test was performed with ball-on-disk wear tester. Findings Experimental results show that cutting force of the LSP-treated tool is lower than untreated tool under the same cutting conditions. Wear rate of the tool nose treated by LSP decreases obviously and the tool life increases by 40 per cent. Originality/value HSS is often used in the manufacture of complex cutting tools. The main value of this article is to improve the tool surface wear resistance, thereby extending the service life of cutter. This paper is valuable not only in theory but also with reference value in engineering practice.


2021 ◽  
Vol 248 ◽  
pp. 04018
Author(s):  
Sergey Grigoriev ◽  
Mars Migranov ◽  
Abdumalik Seitkulov

In the conditions of high-speed processing of parts of complex configuration, with a large end and longitudinal length, from hard-to-work steels and alloys, it is difficult to ensure the wear resistance of the cutting tool in the aisles of one technological passage. To ensure the appropriate quality indicators of the surface layer, it is impossible to replace a worn-out cutting tool. In connection with the above, the problem of ensuring the operability (wear resistance) of the cutting tool is acute. The results of theoretical and experimental studies of contact phenomena in blade cutting based on the thermodynamics of non – equilibrium processes and from the standpoint of self-organization of the tribosystem are presented. the developed thermodynamic model of blade processing with variable cutting modes (non-stationary) allows to minimize the wear of the cutting tool and generally increase production efficiency by accelerating the drive of the main movement of the metal-cutting machine.


Sign in / Sign up

Export Citation Format

Share Document