Control Strategy and Deterministic Optimization Research for Parallel Compound Braking System

2015 ◽  
Vol 789-790 ◽  
pp. 878-882
Author(s):  
Bing Lu ◽  
Hong Wen He ◽  
Qun Ce Wang

Through the design way of reducing dimension, a control algorithm of the parallel compound braking is put forwarded. The flow of reducing dimension is designed, the sampling which is based on the Design of Experiment (DOE) and off-line deterministic optimization are accomplished. The reducing dimension of dual-motor coordinate coefficient is designed and the prediction model of parallel compound braking is constructed, which are based on the data of deterministic optimization. The analysis of reliability shows that the algorithm has a higher reliability and the energy recovery efficiency of the vehicle regenerative braking is improved under the condition of well braking stability.

2011 ◽  
Vol 219-220 ◽  
pp. 1161-1164
Author(s):  
Jing Ming Zhang ◽  
Wei Nan Du ◽  
Xiu Hu Wang

In order to improve hybrid electric vehicle’s energy efficiency, this paper did a research on the regenerative braking system of HEV. In this paper we proposed a new parallel regenerative braking control strategy for HEV and analyzed its characteristics in details. Based on theoretical analysis, we developed a parallel regenerative braking controller for a certain HEV, and built hardware-in-the-loop simulation system to test the controller’s performance. We chose the UDDS driving condition for simulation, and the result shows that the regenerative braking controller we developed is effective and reliable. The controller fulfills the parallel regenerative braking control strategy and distributes the braking force accurately. The energy recovery efficiency reaches 16.7%, which significantly improves the vehicle’s energy efficiency.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jiankun Peng ◽  
Hongwen He ◽  
Wei Liu ◽  
Hongqiang Guo

This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.


2017 ◽  
Vol 872 ◽  
pp. 331-336 ◽  
Author(s):  
Zhi Jun Guo ◽  
Dong Dong Yue ◽  
Jing Bo Wu

The regenerative braking strategy for precursor pure electric vehicle was studied in this paper. Firstly, a constraint optimization model was established for the braking force distribution, in which both braking stability and recovery efficiency of braking energy were taken into account. Secondly, Particle Swarm Optimization (PSO) algorithm was applied to optimize the multi key parameters in the model. Finally, the optimized braking torque of the motor was obtained at different speed, different braking strength and different battery charge state. A vehicle model was built to validate the optimized results through simulation. The results showed that, compared with the original control strategy, the optimized control strategy not only could increase the braking stability effectively, but also improve the energy recovery efficiency in a certain extent.


2012 ◽  
Vol 157-158 ◽  
pp. 542-545 ◽  
Author(s):  
Liang Chu ◽  
Liang Yao ◽  
Zi Liang Zhao ◽  
Wen Ruo Wei ◽  
Yong Sheng Zhang

The Anti-lock Braking System (ABS) of Electric Vehicle (EV) is improved in this paper. Based on the research of system structure and motor, a new method is proposed to adjust the threshold and coordinate the motor braking force with the friction braking force. So the traditional threshold control algorithm of ABS is improved for the EV. The simulation results based on the MATLAB/Simulink model indicate that the improved ABS can keep the wheels in the stability region and decrease the motor regenerative braking force as soon as possible. The balance between brake safety and energy recovery is achieved through this method.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yanfeng Xiong ◽  
Qiang Yu ◽  
Shengyu Yan ◽  
Xiaodong Liu

This paper proposes a novel decoupled approach of a regenerative braking system for an electric city bus, aiming at improving the utilization of the kinetic energy for rear axle during a braking process. Three contributions are added to distinguish from the previous research. Firstly, an energy-flow model of the electric bus is established to identify the characteristic parameters which affect the energy-saving efficiency of the vehicle, while the key parameters (e.g., driving cycles and the recovery rate of braking energy) are also analyzed. Secondly, a decoupled braking energy recovery scheme together with the control strategy is developed based on the characteristics of the power assistance for electric city bus which equips an air braking system, as well as the regulatory requirements of ECE R13. At last, the energy consumption of the electric city bus is analyzed by both the simulation and vehicle tests, when the superimposed and the decoupled regenerative braking system are, respectively, employed for the vehicle. The simulation and actual road test results show that compared with the superposition braking system of the basic vehicle, the decoupled braking energy recovery system after the reform can improve the braking energy recovery rate and vehicle energy-saving degree. The decoupled energy recovery system scheme and control strategy proposed in this paper can be adopted by bus factories to reduce the energy consumption of pure-electric buses.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 711 ◽  
Author(s):  
Yang Yang ◽  
Qiang He ◽  
Yongzheng Chen ◽  
Chunyun Fu

The regenerative braking system of electric vehicles can not only achieve the task of braking but also recover the braking energy. However, due to the lack of in-depth analysis of the energy loss mechanism in electric braking, the energy cannot be fully recovered. In this study, the energy recovery problem of regenerative braking using the independent front axle and rear axle motor drive system is investigated. The accurate motor model is established, and various losses are analyzed. Based on the principle of minimum losses, the motor control strategy is designed. Furthermore, the power flow characteristics in electric braking are analyzed, and the optimal continuously variable transmission (CVT) speed ratio under different working conditions is obtained through optimization. To understand the potential of dual-motor energy recovery, a regenerative braking control strategy is proposed by optimizing the dynamic distribution coefficient of the dual-electric mechanism and considering the restrictions of regulations and the I curve. The simulation results under typical operating conditions and the New York City Cycle (NYCC) proposed conditions indicate that the improved strategy has higher joint efficiency. The energy recovery rate of the proposed strategy is increased by 1.18% in comparison with the typical braking strategy.


2014 ◽  
Vol 701-702 ◽  
pp. 733-738
Author(s):  
Chen Lu Kong ◽  
Mao Song Wan ◽  
Ning Chen ◽  
Li Ya Lv ◽  
Bing Lin Li

This paper mainly discusses the dynamic distribution of regenerative braking system and conventional friction braking system of EV.In order to meet the requirements of vehicle braking stability and recycle the braking energy whenever possible, the paper proposes a control strategy which based on ECE regulation and I curve.Then the proposed control strategy is embedded into the simulation software ADVISOR.The result shows that the control strategy of regenerative braking the paper presented is better than ADVISOR’s own on braking energy recovery, and is especially suitable for frequent braking city conditions.


2010 ◽  
Vol 33 ◽  
pp. 273-275
Author(s):  
Zhao Lin Han ◽  
Yang Yang Wang

Based on the importance of regenerative braking system (RBS) to EV’s sustained travel mileage and prolonging life of mechanical brake. This paper introduces the characteristic and principle of regenerative braking system, at the same time analyses regenerative braking pattern and brake energy recovery, emphasize on the distribution of brake force. At last, this paper provides good base for developing specific regenerative braking system and control strategy.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1672-1676
Author(s):  
Wen Bo Zhu ◽  
Fen Zhu Ji

For the electro-hydraulic braking system in the electric vehicles, a coordinated control strategy of the motor braking and hydraulic one was proposed, which includs electric vehicle braking intention recognition model contains the brake pedal and the accelerator pedal. The simulation mode was built by using Cruise and Matlab/Simulink. The braking stabilities were simulated at different adhesion coefficient and braking intensity. The simulation results show that: Regenerative braking strategy for electric vehicles under braking energy can be recovered under different conditions, braking energy recovery rate in the early 100km / h speed low intensity braking conditions can reach 73.2%. And regenerative braking results validate the feasibility of the effectiveness of coordinated strategies to match the vehicle's power to improve the electric car electric-hydraulic brake energy recovery efficiency.


Sign in / Sign up

Export Citation Format

Share Document