Development of Calculation Methodology of Thermal Equivalent Circuit’s Parameters for Predicting Temperature of High Voltage Cable Lines 110 - 500 kV

2015 ◽  
Vol 792 ◽  
pp. 272-279
Author(s):  
Evgeny Zaytsev

This paper is concerned with the development of techniques to the calculation of the thermal equivalent circuit parameters for the high-voltage cable line laid in the ground. The topology of the scheme was developed in author’s previous publication. This article discusses the parameters of the circuit which simulate the environment of the cable line. Calculation techniques of these parameters are described for cables laid in a plane and a trefoil pattern. The proposed scheme allows one to predict heating of cables on the day ahead in order to prevent thermal degradation of the insulation.

2014 ◽  
Vol 698 ◽  
pp. 586-591 ◽  
Author(s):  
Evgeny Zaytsev ◽  
Vladimir Lebedev

The authors of this paper justify the construction of the thermal equivalent circuit for a three-phase high voltage cable line that describes the transient thermal processes in the cross section of the line. According to the authors, the proposed scheme, if taken as a basis, allows to solve the task of evaluating the power capacity of high-voltage cable lines in real-time and predict heating of cables with the aim to prevent thermal degradation of the insulation.


2010 ◽  
Vol 47 (1) ◽  
pp. 86-93
Author(s):  
Saurabh Kumar Mukerji ◽  
Moleykutty George

An augmented short-circuit test is described for the determination of equivalent-circuit parameters of single-phase transformers with large series-branch impedances. This test may be conducted at rated currents with the transformer connected to a reduced voltage supply. Thus harmonics in current and voltage waves are negligible. This test is therefore free from harmonics-associated errors. Based on test results, phasor equations are found which give formulae for the equivalent-circuit parameters with series-branch impedance split into low- and high-voltage components.


2016 ◽  
Vol 2016 (4) ◽  
pp. 5-7
Author(s):  
V.Yu. Rozov ◽  
◽  
P.N. Dobrodeyev ◽  
A.V. Erisov ◽  
A.O. Tkachenko ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1262
Author(s):  
Alessandro Mingotti ◽  
Federica Costa ◽  
Lorenzo Peretto ◽  
Roberto Tinarelli ◽  
Paolo Mazza

Stray capacitances (SCs) are a serious issue in high-voltage (HV) applications. Their presence can alter the circuit or the operation of a device, resulting in wrong or even disastrous consequences. To this purpose, in this work, we describe the modeling of SCs in HV capacitive dividers. Such modeling does not rely on finite element analysis or complicated geometries; instead, it starts from an equivalent circuit of a conventional measurement setup described by the standard IEC 61869-11. Once the equivalent model including the SCs is found, closed expressions of the SCs are derived starting from the ratio error definition. Afterwards, they are validated in a simulation environment by implementing various circuit configurations. The results demonstrate the expressions applicability and effectiveness; hence, thanks to their simplicity, they can be implemented by system operators, researchers, and manufacturers avoiding the use of complicated methods and technologies.


2015 ◽  
Vol 30 (4) ◽  
pp. 1660-1669 ◽  
Author(s):  
Ashknaz Oraee ◽  
Ehsan Abdi ◽  
Salman Abdi ◽  
Richard McMahon ◽  
Peter J. Tavner

Sign in / Sign up

Export Citation Format

Share Document