The Effect of Base Fluid Type in Nanofluids for Heat Transfer Enhancement in Microtubes

2016 ◽  
Vol 818 ◽  
pp. 12-22
Author(s):  
Bassam H. Salman ◽  
Hussein A. Mohammed ◽  
Akeel S. Kherbeet

In this paper, single phase model was used to investigate the effect of base fluid in enhancing the heat transfer for forced convection flow of SiO2 in microtube. Four different types of base fluid such as water, ethylene glycol, engine oil and glycerin were used in this investigation. Reynolds number used was ranged from 10 to 120. The results are presented in terms of axial and wall temperature along the tube radius and tube axis, axial velocity and Nusselt number. The result shows that the glycerin has the highest Nusselt number followed by engine oil, ethylene glycol then water.

2017 ◽  
Vol 14 (4) ◽  
pp. 263-278 ◽  
Author(s):  
Nawar Mohammed Ridha Hashim ◽  
Mohd. Zamri Yusoff ◽  
Hussein Ahmed Mohammed

Purpose The purpose of this paper is to numerically study the phenomenon of separation and subsequent reattachment that happens due to a sudden contraction or expansion in flow geometry, in addition, to investigating the effect of nanoparticles suspended in water on heat transfer enhancement and fluid flow characteristics. Design/methodology/approach Turbulent forced convection flow over triple forward facing step (FFS) in a duct is numerically studied by using different types of nanofluids. Finite volume method is employed to carry out the numerical investigations. with nanoparticles volume fraction in the range of 1-4 per cent and nanoparticles diameter in the range 30-75 nm, suspended in water. Several parameters were studied, such as the geometrical specification (different step heights), boundary conditions (different Reynolds [Re] numbers), types of fluids (base fluid with different types of nanoparticles), nanoparticle concentration (different volume fractions) and nanoparticle size. Findings The numerical results indicate that the Nusselt number increases as the volume fraction increases, but it decreases as the diameter of the nanoparticles of nanofluids increases. The turbulent kinetic energy and its dissipation rate increase as Re number increases. The velocity magnitude increases as the density of nanofluids decreases. No significant effect of increasing the three steps heights on Nusselt along the heated wall, except in front of first step where increasing the first step height leads to an increase in the recirculation zone size adjacent to it. Research limitations/implications The phenomenon of separation and subsequent reattachment happened due to a sudden contraction or expansion in flow geometry, such as forward facing and backward facing steps, respectively, can be recognized in many engineering applications where heat transfer enhancement is required. Some examples include cooling systems for electronic equipment, heat exchanger, diffusers and chemical process. Understanding the concept of these devices is very important from the engineering point of view. Originality/value Convective heat transfer can be enhanced passively by changing flow geometry, boundary conditions, the traditional fluids or by enhancing thermal conductivity of the fluid. Great attention has been paid to increase the thermal conductivity of base fluid by suspending nano-, micro- or larger-sized particles in fluid. The products from suspending these particles in the base fluid are called nanofluids. Many studies have been conducted to investigate the heat transfer and fluid flow characteristics over FFS. This study is the first where nanofluids are employed as working fluids for flow over triple FFS.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


2012 ◽  
Vol 16 (2) ◽  
pp. 423-444 ◽  
Author(s):  
R. Shanthi ◽  
Sundaram Anandan ◽  
Velraj Ramalingam

Nanofluids are colloidal mixtures of nanometric metallic or ceramic particles in a base fluid, such as water, ethylene glycol or oil. Nanofluids possess immense potential to enhance the heat transfer character of the original fluid due to improved thermal transport properties. In this article, a brief overview has been presented to address the unique features of nanofluids, such as their preparation, heat transfer mechanisms, conduction and convection heat transfer enhancement, etc. In addition, the article summarizes the experimental and theoretical work on pool boiling in nanofluids and their applications.


Author(s):  
Lingala Sundar ◽  
Kottutu V.V. Chandra Mouli ◽  
Zafar Said ◽  
Antonio C.M. Sousa

Abstract Experiments were conducted to evaluate the thermal and frictional entropy generation and exergy efficiency of rGO-Fe3O4-TiO2 hybrid nanofluid in a circular tube under laminar flow. The ternary nanoparticles are synthesized using the sol-gel technique and characterized by XRD, SEM, and FTIR. The stable ethylene glycol based ternary hybrid nanofluid were prepared and thermo-physical properties, heat transfer, friction factor, and pumping power at various particle weight concentrations (0.05% to 0.2%) and Reynolds number (211 to 2200) were investigated. Enhancement in the thermal conductivity and viscosity of 10.6% and 108.3% at ψ = 0.2% and at 60°C over the base fluid were obtained. Similarly, Nusselt number is enhanced to 17.78%; heat transfer coefficient is enhanced to 24.76%; thermal entropy generation is reduced to 19.85%; exergy efficiency enhancement of 6.23% at ψ = 0.2% and at Re = 1548 is achieved. The pressure drop, pumping power, and friction factor is augmented to 13.65%, 11.33%, and 16% at ψ = 0.2% and at Re = 221.1 over the base fluid. The overall thermal performance of the system is enhanced to 14.32%. New equations are modeled to evaluate the thermo-physical properties, Nusselt number, and friction factor.


2008 ◽  
Vol 130 (8) ◽  
Author(s):  
E. Abu-Nada ◽  
K. Ziyad ◽  
M. Saleh ◽  
Y. Ali

Heat transfer enhancement in combined convection around a rotating horizontal cylinder using nanofluids is presented. The transport equations are solved numerically using a second-order finite volume scheme. Water-based nanofluid containing various volume fractions of different types of nanoparticles is used. The nanoparticles used are Cu, Ag, Al2O3, and TiO2. In the region outside the plume, the Nusselt number increases by increasing the volume fraction of nanoparticles. However, in the plume region, the effect of the volume fraction of nanoparticles on the Nusselt number is less pronounced.


Sign in / Sign up

Export Citation Format

Share Document