Evaluation of Carbon Capture Potential in the Brazilian Cement Sector

2016 ◽  
Vol 830 ◽  
pp. 46-53
Author(s):  
Camilla C.N. de Oliveira ◽  
Alexandre Szklo ◽  
Pedro R.R. Rochedo

Cement industry has always been among the largest industrial CO2 emission sources, accounting for 7% of global CO2 emission from stationary sources. CCS technology appears as a major option, in addition to fuel saving and fuel switching measures, able to mitigate CO2 emissions. This study evaluates the potential application of carbon capture in the Brazilian cement sector. Among the CO2 capture technologies studied, the only commercially available for the existing cement plants in Brazil is based on the post-combustion capture route, relying on chemical absorption. To calculate the potential of retroffiting Brazilian cement facilities, it was assumed that the steam and power needed by the capture plant would be generated from a cogeneration plant with natural gas or petroleum coke, or a petroleum coke boiler or even a natural gas boiler would generate steam, and power would be purchased from the grid. Findings indicated an abatement cost hovering between $ 114/tCO2 (in Southeast, South and Midwest of Brazil) and $ 117/tCO2 (in North and Northeast). The gross potential equaled 47 MtCO2/year, being reduced to 31 MtCO2/year after discounting the fraction withouth water availability to implement a carbon capture facility.

2021 ◽  
Vol 47 ◽  
pp. 101488
Author(s):  
Remi Chauvy ◽  
Damien Verdonck ◽  
Lionel Dubois ◽  
Diane Thomas ◽  
Guy De Weireld

2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 26-26
Author(s):  
Alexander Noring ◽  
Miguel Zamarripa-Perez ◽  
Arun Iyengar ◽  
Anthony Burgard ◽  
Jie Bao ◽  
...  

Author(s):  
Thormod Andersen ◽  
Hanne M. Kvamsdal ◽  
Olav Bolland

A concept for capturing and sequestering CO2 from a natural gas fired combined cycle power plant is presented. The present approach is to decarbonise the fuel prior to combustion by reforming natural gas, producing a hydrogen-rich fuel. The reforming process consists of an air-blown pressurised auto-thermal reformer that produces a gas containing H2, CO and a small fraction of CH4 as combustible components. The gas is then led through a water gas shift reactor, where the equilibrium of CO and H2O is shifted towards CO2 and H2. The CO2 is then captured from the resulting gas by chemical absorption. The gas turbine of this system is then fed with a fuel gas containing approximately 50% H2. In order to achieve acceptable level of fuel-to-electricity conversion efficiency, this kind of process is attractive because of the possibility of process integration between the combined cycle and the reforming process. A comparison is made between a “standard” combined cycle and the current process with CO2-removal. This study also comprise an investigation of using a lower pressure level in the reforming section than in the gas turbine combustor and the impact of reduced steam/carbon ratio in the main reformer. The impact on gas turbine operation because of massive air bleed and the use of a hydrogen rich fuel is discussed.


2021 ◽  
Vol 61 (2) ◽  
pp. 325
Author(s):  
Barry E. Bradshaw ◽  
Meredith L. Orr ◽  
Tom Bernecker

Australia is endowed with abundant, high-quality energy commodity resources, which provide reliable energy for domestic use and underpin our status as a major global energy provider. Australia has the world’s largest economic uranium resources, the third largest coal resources and substantial conventional and unconventional natural gas resources. Since 2015, Australia’s gas production has grown rapidly. This growth has been driven by a series of new liquefied natural gas (LNG) projects on the North West Shelf, together with established coal seam gas projects in Queensland. Results from Geoscience Australia’s 2021 edition of Australia’s energy commodity resources assessment highlight Australia’s endowment with abundant and widely distributed energy commodity resources. Knowledge of Australia’s existing and untapped energy resource potential provides industry and policy makers with a trusted source of data to compare and understand the value of these key energy commodities to domestic and world markets. A key component of Australia’s low emissions future will be the development of a hydrogen industry, with hydrogen being produced either through electrolysis of water using renewable energy resources (‘green’ hydrogen), or manufactured from natural gas or coal gasification, with carbon capture and storage of the co-produced carbon dioxide (‘blue’ hydrogen). Australia’s endowment with abundant natural gas resources will be a key enabler for our transition to a low emissions future through providing economically competitive feedstock for ‘blue’ hydrogen.


Sign in / Sign up

Export Citation Format

Share Document