On the Variation of the Polytropic Exponent in a High Pressure Fan Impeller

2016 ◽  
Vol 841 ◽  
pp. 286-291
Author(s):  
Andrei Dragomirescu

Fan impellers are usually designed considering that the pumped air is incompressible and homogeneous, i.e. its density remains constant. When the incompressibility hypothesis can lead to significant errors, as in the case of high pressure fans, the analysis of the air flow can be made by considering that the air undergoes a polytropic process of constant polytropic exponent. In this paper, the concept of polytropic process of variable exponent depending on impeller radius is introduced, in order to better approximate the phenomena that take place inside blade passages. Numerical results obtained for an impeller of a high pressure fan without spiral casing suggest that the pumped air undergoes two different processes: an expansion in the first part of the impeller and the usual compression in the second part. The two processes are reflected in the strong variation of the polytropic exponent, which shows a vertical asymptote where the change of the process takes place. The results also suggest that high pressure fan impellers could consist of two stages, each stage being designed according to the process that takes place inside it: expansion or compression.

1988 ◽  
Vol 110 (2) ◽  
pp. 251-258 ◽  
Author(s):  
S. Aoki ◽  
K. Teshima ◽  
M. Arai ◽  
H. Yamao

Phase II of the high-temperature turbine test was performed using the High-Temperature Developing Unit (HTDU). This unit has the same two stages as the high-pressure turbine of the AGTJ-100A reheat system. The purpose of the Phase II test was to investigate the potential of candidate technologies that may be applied to the advanced engine, the AGTJ-100B. Cooling characteristics of several cooling schemes for the first stage blades, and the performance of thermal barrier coating employed on the first stage nozzles and blades, were investigated. This paper presents the Phase II test results.


Author(s):  
Юрий Николаевич Рыбаков ◽  
Александр Васильевич Дедов ◽  
Роман Игоревич Кюннап ◽  
Сергей Владимирович Ларионов

Исследована проницаемость фторированного полиэтилена высокого давления (ПВД), предназначенного для изготовления ремонтных и технологических вкладышей резервуаров складов временного хранения топлива. Использование таких вкладышей позволяет снизить технологические потери углеводородов и увеличить надежность хранилищ из полимерных материалов. В качестве объекта исследования использовали пленки ПВД 10204-003 толщиной 100 мкм. Проницаемость пленок определяли при контакте с бензином марок Нормаль-80, Премиум-95, авиационным керосином ТС-1 и дизельным топливом. Рассмотрен механизм формирования структуры поверхностного фторированного слоя. Исследована кинетика изменения коэффициента проницаемости исходного и модифицированного полиэтилена в течение возможного срока хранения топлив. По результатам исследования установлено: 1) в полиэтилене перенос топлива протекает в две стадии, что определяется раздельной диффузией низкомолекулярных и высокомолекулярных фракций углеводородов; 2) фторирование полиэтилена приводит к уменьшению коэффициента проницаемости (что имеет практическое значение для сохранения качества топлива), но не влияет на перенос фракции углеводородов минимальной молекулярной массы. The permeability of fluorinated high-pressure polyethylene (HDPE), intended for the manufacture of repair and technological liners of tanks for temporary fuel storage has been investigated. As the object of research, 10204-003 HDPE films with 100 μm thickness were used. The permeability of the films was determined by contact with gasoline of the Normal-80 and Premium-95 brands, aviation kerosene TS-1, and diesel fuel. The formation mechanism of the surface fluorinated layer structure was considered. The kinetics of changes in the permeability coefficient of the original and modified polyethylene during the possible fuel storage period has been studied. It has been established that the transfer of fuel in polyethylene proceeds in two stages, which is determined by the separate diffusion of low-molecular and high-molecular hydrocarbon fractions. Fluoridation of polyethylene decreases the permeability coefficient, but does not affect the transfer of hydrocarbon fraction with the minimum molecular weight.


The particles of an aerosol that is being sucked into a point sink move more slowly than the air as the orifice is approached; this is on account of their inertia. Their weight causes them to deviate from the radial streamlines of air flow at a distance from the orifice. If the circumstances are such that either of these effects operates alone, that is when either the inertia of the particles or their rate of fall due to gravity is negligible, the sample of the aerosol drawn into the orifice will have the correct concentration. Should both factors act together, however, the concentration of the sample will be low. This paper contains an analysis of the problem and a few numerical results which indicate practical steps which can be taken to avoid sampling errors.


1968 ◽  
Vol 36 (284) ◽  
pp. 1052-1060 ◽  
Author(s):  
G. A. Chinner ◽  
T. R. Sweatman

SummaryAn enstatite-cordierite-sillimanite-quartz rock from a pyroxenegranulite facies terrain in southern Rhodesia gives evidence of at least two stages of recrystallization : an early, high-pressure recrystallization to form the assemblage enstatite-kyanite-quartz, and a later, ‘retrogressive’ recrystallization during which kyanite inverted to sillimanite, and cordierite was formed by reaction. The rock itself has ratios of R2+ : Al : Si that are virtually those of cordierite ; the recent data of Schreyer (1967) may thus be applied to the occurrence. The early kyanite-enstatite recrystallization occurred under pressures in excess of 10 kb, corresponding to depths greater than those of the continental Moho.


Author(s):  
Khaled I. E. Ahmed ◽  
Ali K. Abdel-Rahman ◽  
Mahmoud Ahmed ◽  
Wael M. Khairaldien

Renewable energy source deployment is growing rapidly as it reduces CO2 emissions and increases diversity and security of supply. Solar chimney (SC) is a promising large-scale power technology, which absorbs solar radiation and converts parts of solar energy into electric power free of CO2 emissions. A major problem of Solar Chimney Power Plant (SCPP) is its low conversion efficiency as determined by the thermal performance of the system. However, the conversion efficiency of SCPP significantly increases with the SC height increase. The current paper proposes a new design of a virtual height aided solar chimney. In this new system the solar chimney is aided with a passive cooling system at the top of the chimney and a passive solar heater at its base to virtually mimic larger heights of the chimney. The new design has been simulated numerically for development and optimization. The numerical study is done in two stages to examine this concept. In the first stage, numerical results are obtained for the effect of the chimney height on the inside air flow speed. Then, in the second stage, the effect of decreasing the temperature at the chimney exit and the effect of increasing the temperature at the chimney base on the air flow speed are examined separately for small chimney heights. Then the combined effect of the two actions is investigated at a wide range of chimney heights. The numerical results have shown that the localized base heating and exit cooling have significantly enhanced the chimney performance for chimney heights up to 500m. A chimney with height of 300m gains an increase in the air velocity more than 25% due to the heating and cooling actions. Virtual height aided Chimney with original height of 300m acts similarly to a conventional chimney with height of 500m due to the effect of base heating and exit cooling actions. This air flow velocity increase reflects 100% increase in the expected generated electric power. Further detailed results are presented and discussed.


2020 ◽  
Author(s):  
Jianying Feng ◽  
Yu Zhang ◽  
Suping Wang

<p>In 2018, severe meteorological drought occurred in the southwest of Northeast China, the  east-central of Inner Mongolia and the east of North China. Drought shows obvious regional and stage nature .In early March, mild to moderate drought appeared in North China, followed by severe drought in parts of northern and eastern of Hebe province. After the middle of April, the drought was alleviated obviously, and the drought in the southwest of Northeast China began to show signs. In  early May, there was mild to moderate drought in the central and eastern part of Inner Mongolia, and the drought in Northeast China developed. From June to early August, severe drought and above occurred in parts of Liaoning province , Inner Mongolia and North China. In mid-August, in addition to Liaoning province and North China, there were scattered light to moderate drought, drought relief in the northern China. In early September, the drought in North China increased and the range spread northward, and there were droughts of different degrees in the whole North China.In winter, there is only mild drought in North China.</p><p>The drought in this region has affected the agricultural production in different degrees. Spring sowing is blocked in the east of Inner Mongolia and the west of Northeast China, and high temperature in summer leads to the development of drought, corn and rice and other crops are adversely affected.</p><p>From spring to autumn, the precipitation in most parts of the drought disaster  area is less than 10-40%, and the temperature is higher than 1-2 ℃. The lack of precipitation and abnormal high temperature accelerated the loss of surface water, which resulted in the occurrence of drought in this area.</p><p>In spring of 2018, the middle and high latitudes are generally controlled by flat air flow, which is not conducive to the establishment of trough ridge, making the northern dry area lack of favorable precipitation conditions; in summer and autumn, the existence of Baikal Lake high-pressure ridge, resulting in circulation patterns that are not conducive to the precipitation conditions in the northern dry area. Among them, the obvious flat air flow in spring and the obvious high pressure ridge in summer are the main reasons for the outstanding drought in spring and summer in the northern arid area.</p>


2005 ◽  
Vol 127 (1) ◽  
pp. 51-60 ◽  
Author(s):  
A. Fe´lix-Quin˜onez ◽  
P. Ehret ◽  
J. L. Summers

A direct comparison between experimental and numerical results for the passage of an array of 3D flat-top, square shaped surface features through an EHL point contact is presented. Results for pure rolling conditions show that the features’ deformation in the high-pressure region is governed by their ability to entrap lubricant both underneath and in the grooves during their passage through the inlet zone. Film perturbations associated with each defect occur as locally enhanced regions of lubricant and film thickness micro-constrictions. Under sliding conditions the features sustain further deformations as they traverse the high-pressure conjunction and meet the highly viscous lubricant entrapped in the grooves, which moves at a different velocity. Lubricant is also seen to accumulate just in front or behind the features depending on the slide-to-roll ratio. Overall, the results highlight the importance of understanding the effects of the defects structure and the lubricant rheology on the film thickness to unravel the effects of real roughness patterns.


Sign in / Sign up

Export Citation Format

Share Document