Investigations on Influence of Geometric Parameters in Drawing of Perforated Sheet Metals

2016 ◽  
Vol 852 ◽  
pp. 229-235 ◽  
Author(s):  
G. Venkatachalam ◽  
J. Nishanth ◽  
M. Mukesh ◽  
D.S. Pavan Kumar

Forming Limit Diagram (FLD) is a resourceful tool to study the formability of sheet metals. Research on the formability of Perforated Sheet Metal is growing over the years as perforated sheet metal finds its applications in various fields. But finding FLD of perforated sheet metals is complex due to the presence of holes. Also, the hole size, shape and pattern, ligament ratio, thickness of the blank, percentage of open area influence the formability of a perforated sheet metal.In the present scenario, various simulation softwares have made the process of plotting FLD much easier, saving time and money. This paper is an attempt to predict the formability of mild steel perforated sheet metal through simulation software package LS Dyna. Also, Parametric analysis is performed to determine the influence of geometric parameters on the drawability of the perforated sheet metal.

2012 ◽  
Vol 548 ◽  
pp. 382-386 ◽  
Author(s):  
G. Venkatachalam ◽  
S. Narayanan ◽  
Narayanan C. Sathiya

Forming limit diagram (FLD) is the most appropriate tool used to obtain the safe strain region in sheet metal forming industries. This FLD is based on limiting values of major and minor strains. This Limiting strain is the strain at the onset of fracture / necking in a sheet metal. It is influenced by the material / condition of the material, strain condition in geometrical features of a sheet metal. In this paper, square pattern – square holed, perforated commercial aluminium sheets are considered for the study. The limiting strain for the above perforated sheet metals is predicted using finite element analysis. It is found that the limiting strain is controlled by percentage of open area, ligament ratio and hole size.


1989 ◽  
Vol 55 (512) ◽  
pp. 994-999 ◽  
Author(s):  
Hideo ISEKI ◽  
Tadao MUROTA ◽  
Kazunori KATO ◽  
Shigeo HAYASHI

2015 ◽  
Vol 2015 ◽  
pp. 1-21
Author(s):  
G. F. Miori ◽  
E. C. Bordinassi ◽  
S. Delijaicov ◽  
G. F. Batalha

The aim of this study is to determine the sheet metal formability of AA-5083-O sheets processed by the Friction Stir Processing (FSP). The FSP process was studied and a FSP tool was built. Processing quality was verified by the metallography in the processing region, which established the voids presence. Tensile tests were carried out on FSP and non-FSP specimens, and the results showed that FSP specimens have 30% greater resistance than non-FSP ones. The formability of FSP sheets was produced in MSC-MARC and Abaqus and these software products were compared by using the nonlinear FEM code. The Forming Limit Diagram was built with the results from both software products. A device to process FSP sheet metals was developed and the sheets were processed to validate the results from the software. The tools made for the bulge tests were circular and ellipse-shaped. After the bulge tests, the commercial sheets showed close approximation to those obtained from the software. The FSP sheets broke when inferior pressure was applied because of the defects in the FSP process. The results of the FSP presented the same formability of commercial sheets, however, with 30% greater strength.


2006 ◽  
Vol 510-511 ◽  
pp. 330-333
Author(s):  
M.C. Curiel ◽  
Ho Sung Aum ◽  
Joaquín Lira-Olivares

Numerical simulations based on Finite Element Analysis (FEA) are widely used to predict and evaluate the forming parameters before performing the physical processes. In the sheet metal industry, there are basically two types of FE programs: the inverse (one-step) programs and the incremental programs. In the present paper, the forming process of the shield case piece (LTA260W1-L05) was optimized by performing simulations with both types of software. The main analyzed parameter was the blankholding force while the rest of the parameters were kept constant. The criteria used to determine the optimum value was based on the Forming Limit Diagram (FLD), fracture and wrinkling of the material, thickness distribution, and the principal strains obtained. It was found that the holding force during the forming process deeply affects the results, and a range of values was established in which the process is assumed to give a good quality piece.


2005 ◽  
Vol 6-8 ◽  
pp. 457-464 ◽  
Author(s):  
L. Lamminen

Incremental sheet forming (ISF) has been a subject of research for many research groups before. However, all of the published results so far have been related to either commercial ISF machines or ISF forming with NC mills or similar. The research reported in this paper concentrates on incremental sheet forming with an industrial robot. The test equipment is based on a strong arm robot and a moving forming table, where a sheet metal blank is attached. The tool slides on the surface of the sheet and forms it incrementally to the desired shape. The robot is capable of 5-axis forming, which enables forming of inwards curved forms. In this paper the forming limit diagram (FLD) for ISF with the robot is presented and it is compared with conventional forming limit diagrams. It will be shown that the conventional FLD does not apply to incremental forming process. Geometrical accuracy of sample pieces is also studied. Cones of different shapes are formed with the robot equipment and their correspondence with the 3D CAD model is evaluated. The results are compared with other results of accuracy of incremental sheet forming, reported earlier by other researchers. The third issue covered in this article is a product development point of view to incremental sheet forming. In addition to fast prototyping and low volume production of sheet metal parts, ISF brings new possibilities to sheet metal component design and manufacturing. These possibilities can only be exploited if design rules, that will take the possibilities and limitations of the method into account are created for ISF.


2014 ◽  
Vol 626 ◽  
pp. 171-177 ◽  
Author(s):  
Yan Yo Chen ◽  
Yu Chung Tsai ◽  
Ching Hua Huang

This paper proposes an integrated hydraulic bulge and forming limit testing method and apparatus for sheet metals. By placing a PU (Polyurethane) plate between molds and uniformly applying hydraulic pressure to sheet metals, a biaxial stress-strain relationship and forming limit diagram (FLD) displaying both left and right sides were acquired using the same apparatus. An uniaxial tension test and traditional drawing test were conducted to compare the results obtained from the proposed hydraulic bulge and forming limit testing methods, respectively. A close correlation between the results of the stress-strain relationship and FLD in both comparisons verified the feasibility and capability of this integrated hydraulic testing method and apparatus for use with sheet metals.


Sign in / Sign up

Export Citation Format

Share Document