Response spectrum-based seismic response of bridge embankments

2020 ◽  
Vol 57 (11) ◽  
pp. 1639-1651
Author(s):  
Juan-Carlos Carvajal ◽  
William D. Liam Finn ◽  
Carlos Estuardo Ventura

A single degree of freedom model is presented for calculating the free-field seismic response of bridge embankments due to horizontal ground shaking using equivalent linear analysis and a design response spectrum. The shear wave velocity profile, base flexibility, 2D shape, and damping ratio of the embankment are accounted for in the model. A step-by-step procedure is presented for calculating the effective cyclic shear strain of the embankment, equivalent homogeneous shear modulus and damping ratio, fundamental period of vibration, peak crest acceleration, peak shear stress profile, peak shear strain profile, equivalent linear shear modulus profile, and peak relative displacement profile. Model calibration and verification of the proposed procedure is carried out with linear, equivalent linear, and nonlinear finite element analysis for embankments with fundamental periods of vibration between 0.1 and 1.0 s. The proposed model is simple, rational, and suitable for practical implementation using spreadsheets for a preliminary design phase of bridge embankments.

2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2011 ◽  
Vol 374-377 ◽  
pp. 1391-1395
Author(s):  
Xue Song Lu ◽  
Wei Xiang

Based on the red clay of Wuhan reinforced by Ionic Soil Stabilizer, the red clay soil is treated by different matches of ISS at first, then is tested in the Atterberg limits test and dynamic triaxia test. The results show that the plastic index decreases, and the red clay were greatly improved under the dynamic condition, the maximum dynamic shear modulus ratio acquired an incensement of 27.72% on average after mixing the ISS into the red clay. In addition, It was concluded that the confining pressure influenced the dynamic shear modulus and damping ratio to a certain extent. Given the same strain conditions, with the incensement of confining pressure increases, the dynamic shear modulus increased and the damping ratio decreased. Moreover, when plotting the dynamic shear modulus versus the dynamic shear strain, the similar curve can be formed for both the natural soil and the modified one, the dynamic shear modulus monotonously decreased with the incensement of the dynamic shear strain. However, the value of dynamic shear modulus differed in the same shear strain between the natural soil and the soil modified by ISS.


2016 ◽  
Vol 858 ◽  
pp. 157-162 ◽  
Author(s):  
Hao Lei Wang ◽  
Feng Jie Ma ◽  
Chao Zhu

In order to break through the limitation of the width of river, depth of water, channel and etc., it is an optimal choice to construct a long-span suspension bridge. In a suspension bridge, the main cable is the major bearing member; and the use of super high strength cable wire can lighten the dead weight and obtain an economical design. 1960 Mpa cable wire is adopted by an under-construction suspension bridge, namely Ni-Zhou Channel Bridge, for the first time in China. In this paper, taking the Ni-Zhou Channel Bridge as a case-study, comparative analyses on dynamic characteristic and seismic response of long-span suspension bridge with 1960 Mpa cable wire are performed. Firstly, dynamic calculating model for Ni-Zhou Channel Bridge is built and its dynamic characteristics are studied; then by using response spectrum and time history analysis method, seismic response of Ni-Zhou Channel Bridge is investigated on the basis of design response spectrum and artificial seismic ground motions; finally, the energy dissipation performances of a seismic protection devices (viscous damper) are also discussed. The results show that long-span suspension bridge with 1960 Mpa cable wire has a longer natural vibration period; the use of viscous damper can effectively reduce the peak value of bending moment in stiffening girder. This paper can provide references for the project’s construction.


2012 ◽  
Vol 204-208 ◽  
pp. 557-561
Author(s):  
Hong Yan Xi ◽  
Jun Hua Zhang ◽  
Jing Sun ◽  
Jing Li ◽  
You Qing Wang ◽  
...  

Strong earthquake ground motion leads to residual displacements of gravity retaining walls. Since large deformation occurs in foundation soil, nonlinear mechanical behavior should not be neglected in numerical modeling. The inversion methodology in geophysics is borrowed here to study the nonlinearity, i.e. the variation of shear modulus and damping ratio with the increase of shear strain of soil. A simplified model for the seismic displacement of retaining walls is combined with a genetic algorithm for the inversion. The dynamic shear modulus and damping ratio curves, representing the nonlinear property of foundation soil in a centrifuge test for gravity retaining walls, is obtained by the use of an inversion scheme. The result indicates that, for low level of shear strain, the shear modulus is larger than that used in the literature, implying that the model ground may be stiffer than expectation. For high level of shear strain, the inverted damping ratio is larger than the conventional one, which has efficiently suppressed an overestimation of seismic displacements. It is also displayed that the inversion method is an effective way to obtain quantitatively the dynamic nonlinearity of foundation soil of gravity retaining walls.


2020 ◽  
Vol 12 (4) ◽  
pp. 1616 ◽  
Author(s):  
Xianwen Huang ◽  
Aizhao Zhou ◽  
Wei Wang ◽  
Pengming Jiang

In order to support the dynamic design of subgrade filling engineering, an experiment on the dynamic shear modulus (G) and damping ratio (D) of clay–gravel mixtures (CGMs) was carried out. Forty-two groups of resonant column tests were conducted to explore the effects of gravel content (0%, 10%, 20%, 30%, 40%, 50%, and 60%, which was the mass ratio of gravel to clay), gravel shape (round and angular gravels), and confining pressure (100, 200, and 300 kPa) on the dynamic shear modulus, and damping ratio of CGMs under the same compacting power. The test results showed that, with the increase of gravel content, the maximum dynamic shear modulus of CGMs increases, the referent shear strain increases linearly, and the minimum and maximum damping ratios decrease gradually. In CGMs with round gravels, the maximum dynamic shear modulus and the maximum damping ratio are greater, and the referent shear strain and the minimum damping ratio are smaller, compared to those with angular gravels. With the increase of confining pressure, the maximum dynamic shear modulus and the referent shear strain increase nonlinearly, while the minimum and maximum damping ratios decrease nonlinearly. The predicting equation for the dynamic shear modulus and the damping ratio of CGMs when considering confining pressure, gravel content, and shape was established. The results of this research may put forward a solid foundation for engineering design considering low-strain-level mechanical performance.


Author(s):  
Heather J. Miller ◽  
Pedro de Alba ◽  
Kenneth C. Baldwin

A testing system has been developed to study the behavior of saturated sand under low-level cyclic shearing strains. The system has been used to determine threshold shear strain levels for fabric destruction in sand aged for different time periods. The system includes a special soil chamber and a direct simple shear (DSS) machine. To impose very small shearing strains, the DSS machine was designed to apply and measure horizontal deformations as small as 0.0005 mm (2 × 10−5 inches). Data obtained to date support the results of previous investigators who performed triaxial tests on freshly deposited samples, indicating a threshold cyclic shear strain level of approximately 0.01 percent. At strains in excess of those levels, destruction of the sand fabric occurred, as evidenced by a reduction in shear modulus at low strain levels. Subsequent modest increases in shear modulus were observed after the specimens were allowed to recover for 24 hours and then tested again. During the recovery period, drainage valves were left open to allow for dissipation of excess pore pressures and for potential consolidation during the short aging period. The DSS system was found to work well for low strain measurements. Furthermore, since shear strains are measured directly under DSS conditions (as opposed to triaxial conditions), the DSS system shows much promise as a device for studying parameters that may influence threshold shear strain levels and fabric evolution and destruction in sands.


1993 ◽  
Vol 30 (5) ◽  
pp. 747-757 ◽  
Author(s):  
Nario Yasuda ◽  
Norihisa Matsumoto

Cyclic torsional simple shear (CTSS) tests and cyclic triaxial (CTX) tests were carried out to investigate the dynamic deformation characteristics of sands and rockfill materials. It was found that the shear modulus and damping ratio can be expressed as a function of shear strain, void ratio, and confining stress. Also the shear modulus in CTSS tests is larger than in CTX tests because of the influence of the intermediate principal stress. When the shear strain is increased, the shear modulus (G) and damping ratio (h) of the rockfill materials were altered at smaller strains than in sands. Key words : sands, rockfill materials, torsional simple shear, shear modulus, damping ratio.


2008 ◽  
Vol 45 (4) ◽  
pp. 470-483 ◽  
Author(s):  
Mohammad H.T. Rayhani ◽  
M. Hesham El Naggar

Seismic site response of sandy soils and seismic soil–structure interaction are investigated using an electrohydraulic earthquake simulator mounted on a centrifuge container at an 80g field. The results of testing uniform and layered loose to medium-dense sand models subjected to 13 simulated earthquakes on the centrifuge are presented. The variation of shear modulus and damping ratio with shear strain amplitude and confining pressure was evaluated and their effects on site response were assessed. The evaluated shear modulus and damping ratio agreed reasonably with laboratory tests and empirical relationships. Site response analysis using the measured shear wave velocity and estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. The effect of soil–structure interaction for structures situated on dry sand is also investigated. These tests have revealed many important insights with regard to the characteristics of seismic site response and seismic soil–structure behaviour. The tests showed that the seismic response of soil deposits, input motions, and overall behaviour of the structure are affected by soil stratification. The results showed that the seismic kinematic soil–structure interaction is not very significant for structures situated on loose sand.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shengnian Wang ◽  
Xinqun Gao ◽  
Wei Ma ◽  
Guoyu Li ◽  
Chong Shi ◽  
...  

The contribution of gravel fraction on the maximum shear modulus (Gmax), dynamic shear modulus ratio (G/Gmax), and damping ratio (λ) of cementitious coarse-grained soils has not been fully understood yet. Large-scale triaxial cyclic tests for geopolymer-stabilized coarse-grained soils (GSCGSs) were conducted with different volumetric block proportions (VBPs) under various confining pressures (CPs) for investigating their dynamic behaviors and energy dissipation mechanisms. Results indicate that the Gmax of GSCGS increases linearly with VBPs but nonlinearly with CP. High VBPs will probably result in a gentle decrease in G/Gmax and a rapid increase in normalized λ (λnor), while the opposite is the case for a high CP. With the shear strain amplitude being normalized, the G/Gmax and λnor are distributed in a narrow band with low dispersion and thus can be well-described by empirical functions of the normalized shear strain amplitude.


Author(s):  
Meysam Bayat

Understanding the factors that influence the dynamic behavior of granular soils during cyclic loading is critical to infrastructure design. Previous research has lacked quantitative study of the effects of fouling index (FI), mean effective confining pressure, relative density, shear strain level and anisotropic consolidation, especially when the effective vertical stress is lower than the effective horizontal stress on the dynamic behavior of gravelly soils. The objective of the present study was to evaluate the dynamic behavior and volume change of both clean and fouled specimens for practical applications. To this end, cyclic triaxial tests with local strain measurements under both isotropic and anisotropic confining conditions were conducted. It is found that the fouled specimen with 50 % sand (i.e. the specimen which contains 50 % gravel and 50 % sand) has the highest shear modulus at low shear strain levels and the largest volume reduction and damping ratio at large shear strain levels. The results of tests indicate that the effect of fouling index on the shear modulus is reduced at large shear strain levels. Volumetric contraction due to the increase in mean effective confining pressure is more significant at large shear strain levels. The results also indicate that the stiffness of the specimens under anisotropic compression mode are larger than those in extension or isotropic mode.


Sign in / Sign up

Export Citation Format

Share Document