Evaluating the Performance of Eaves to Promote Energy Efficiency of Traditional Dwellings in Suzhou

2016 ◽  
Vol 858 ◽  
pp. 234-240
Author(s):  
Yue Fu ◽  
Wei Ju Yang

A shading roof can be an effective strategy to decrease the air-conditioning energy consumption as well as to improve the thermal environment inside a house in the place that is hot in summer and cold in winter. In Suzhou, a city in such place, traditional dwellings were constructed with shading roof eaves that have different sizes, allowing them adaptive to local climate. These eaves are worthy of being studied and improved. This study presents a summary of the sizes of the shading roof eaves of traditional Suzhou dwellings. The southward eave that has the greatest effect on indoor thermal environment is taken as the object of the current study, and a traditional Suzhou dwelling is selected as our case for the current study. Several comparative models are built, in which, the southward length of the roof eave is increased by 0.2m, from 0m to 2m. The effects of the length on both heating and cooling energy consumption are simulated by using the software Energyplus. As shown in the quantitative analysis of the simulation results, the structure is energy-efficient when the length is less than 0.6m, and the annual energy consumption reaches its minimum when the length is 0.4m.

VLSI Design ◽  
2001 ◽  
Vol 12 (3) ◽  
pp. 349-363
Author(s):  
V. A. Bartlett ◽  
E. Grass

Strategies for the design of ultra low power multipliers and multiplier-accumulators are reported. These are optimized for asynchronous applications being able to take advantage of data-dependent computation times. Nevertheless, the low power consumption can be obtained in both synchronous and asynchronous environments. Central to the energy efficiency is a dynamic-logic technique termed Conditional Evaluation which is able to exploit redundancies within the carry-save array and deliver energy consumption which is also heavily data-dependent.Energy efficient adaptations for handling two's complement operands are introduced. Area overheads of the proposed designs are estimated and transistor level simulation results of signed and unsigned multipliers as well as a signed multiplier-accumulator are given.Normalized comparisons with other designs show our approach to use less energy than other published multipliers.


2021 ◽  
Vol 246 ◽  
pp. 08005
Author(s):  
A.S. Strongin ◽  
A.M. Zhivov

In geographical areas with cold climates, large, massively constructed industrial and warehouse buildings and logistics complexes are large consumers of energy resources. The great height and large contained volumes of the premises, the presence of a significant number of doors, and building configurations that include many transport corridors all require the use of air-thermal curtains to increase the energy efficiency of the buildings’ heating, ventilating, and air-conditioning (HVAC) systems, which commonly produce several thousand kilowatts of thermal power. Optimization of air curtains can improve the microclimates of the premises, achieve savings in the initial construction costs, and also reduce energy consumption during operation by 10–20%.


2011 ◽  
Vol 280 ◽  
pp. 147-151 ◽  
Author(s):  
Hong Guo ◽  
Min Fang Su ◽  
Xiao Jun Jin

Based on the current energy consumption situation of existing masonry-concrete residential buildings in China, it discussed the main energy-saving renovation policies and technologies. Taking existing masonry-concrete residential building of Taiyuan city as a case, it analyzed its heat loss situations, energy-saving renovation design and reconstruction technologies of building envelope. It discussed energy-saving renovation effects. Energy efficiency and indoor thermal environment improved significantly after energy-saving renovation. The building life is extended.


2001 ◽  
Vol 7 (14) ◽  
pp. 161-164
Author(s):  
Ken-ichi HASEGAWA ◽  
Hiroshi YOSHINO ◽  
Masamichi ENAI ◽  
Kazuo EMURA ◽  
Takao SAWACHI ◽  
...  

2013 ◽  
Vol 316-317 ◽  
pp. 1128-1132
Author(s):  
Ya Zhou Jing ◽  
Guo Jun Zhao ◽  
Hai Shan Li ◽  
Yan Gao

In this paper, it reveals that the ventilation using patterns can do much to the energy consumption for air-conditioning. In the simulation, it models the person behavior with their action for regulating indoor thermal environment by opening the window for natural ventilation, and compares the influence by ventilation in different patterns to the air conditioning energy consumption. The results show that in the pattern priority for using the natural wind it is helpful for reducing the energy consumption.


Author(s):  
S. Alabadi ◽  
Predrag Rapajic ◽  
K. Arshad ◽  
Soheil Rostami

The number of Machine-to-Machine (M2M) devices has increased massively in the last few years and will continue to increase in the years to come. Spectrum utilisation efficiency and energy efficiency are the main challenges and design goals for M2M networks. Cognitive radio (CR) is a promising technology that can address these challenges. In this paper, the authors have proposed and developed an energy efficient mechanism to reduce energy consumption in Cognitive M2M (CM2M) networks. Their solution guarantees the throughput and reliability constraints for CM2M Devices (CM2MDs). The proposed mechanism can reduce energy consumption in CM2M networks by exploiting efficient sensing and accessing schemes for CM2MDs. The authors further develop sleep-mode/switching and accessing techniques to work efficiently with the proposed mechanism. The simulation results show that the proposed mechanism guarantees a desirable throughput and reduces overall energy consumption in the network.


2013 ◽  
Vol 765-767 ◽  
pp. 1747-1751
Author(s):  
Ding De Jiang ◽  
Wen Juan Wang ◽  
Wei Han Zhang ◽  
Peng Zhang ◽  
Ya Li

This paper proposes an energy-efficient model to overcome the energy-efficient problem in large-scale IP networks, based on QoS constraints. To characterize network energy consumption, we present a link energy consumption model based on the sleep and speed scaling mechanisms. If there is no traffic on a link, let it sleep, or activate it and divide its energy consumption into base energy consumption and traffic energy consumption. And then according to the link energy consumption model, we can build our energy-efficient model to improve the network energy efficiency. Finally, simulation results show that our model can significantly improve the network energy efficiency.


Sign in / Sign up

Export Citation Format

Share Document