Coordinated Torque Control for Mode-Switch between Motor and Engine Driving in Heavy Hybrid Electric Vehicle

2011 ◽  
Vol 86 ◽  
pp. 779-783 ◽  
Author(s):  
Yang Yang ◽  
Jian Feng Huang ◽  
Da Tong Qin ◽  
Wen Hui Yang

Aiming the vehicle ride performance, the process of driving mode-switch for a heavy hybrid power system and parameter changes among the engine, motor, clutch and transmission during the Mode-Switch process between Motor and Engine Driving were analyzed. The coordinated torque control strategy was established for Mode-Switch between motor and engine driving. The heavy hybrid electric vehicle simulation model was developed based on the strategy. The performance for the mode-switch process between motor and engine driving was simulated and analyzed. The results show that introducing the coordinated control strategy reduces the torque fluctuation during the driving-mode-switch process and improves the vehicle drivability.

2011 ◽  
Vol 228-229 ◽  
pp. 951-956 ◽  
Author(s):  
Yun Bing Yan ◽  
Fu Wu Yan ◽  
Chang Qing Du

It is necessary for Parallel Hybrid Electric Vehicle (PHEV) to distribute energy between engine and motor and to control state-switch during work. Aimed at keeping the total torque unchanging under state-switch, the dynamic torque control algorithm is put forward, which can be expressed as motor torque compensation for engine after torque pre-distribution, engine speed regulation and dynamic engine torque estimation. Taking Matlab as the platform, the vehicle control simulation model is built, based on which the fundamental control algorithm is verified by simulation testing. The results demonstrate that the dynamic control algorithm can effectively dampen torque fluctuations and ensures power transfer smoothly under various state-switches.


Author(s):  
Nathaniel Steinbock ◽  
Laura Prange ◽  
Brian C. Fabien

Emergency lane changes are often the best course of action when avoiding obstacles on the road, but this maneuver has the possibility of sending the vehicle out of control. The University of Washington EcoCAR team has a hybrid-electric vehicle outfitted with an electric drivetrain and variable torque control to each of the rear wheels. Each rear wheel has an electric motor that is independently controlled to provide torque to the wheel. A lateral vehicle dynamics model is used to develop a torque control strategy to improve the safety and maneuverability of a modified hybrid-electric 2016 Camaro as part of the EcoCAR 3 competition. The specific scenario simulated is a two-lane lane change at a speed of 55 mph. We would like to increase the yaw and lateral accelerations that the vehicle can perform safely by controlling differing torques out of the two motors. Regulating these accelerations requires a control strategy over the left and right motor torques. Equal-torque control of the electric motors will be used as a baseline.


2020 ◽  
Vol 68 (5) ◽  
pp. 399-405
Author(s):  
Sooyoung Kim ◽  
Seibum Choi

This article proposes a robust control strategy for gear shifts of a parallel-type hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT). A vehicle equipped with DCT requires accurate torque transfer control through the driveline during gear shifts to ensure good shift quality in the absence of smoothing effects from torque converter. Unlike conventional vehicles driven only by internal combustion engines, a HEV can utilize the drive motor to improve its gear shifting performances. In this article, an integrated torque and speed control strategy is developed to minimize the driveline oscillations that occur during gear shifts and to complete the shift as fast as the driver wants. A robust H-infinity controller is designed to control transmission output torque as well as clutch slip speed, particularly in inertia phase that mostly determines the total shift quality. The effectiveness of the proposed control strategy as well as its robustness is verified by comparative studies using a proven vehicle model developed in MATLAB/SimDriveline.


Sign in / Sign up

Export Citation Format

Share Document