Exploring the Potential of Simulation Model Calibration an Acoustical Retrofit Case Study

2019 ◽  
Vol 887 ◽  
pp. 561-568
Author(s):  
Nina Jakic ◽  
Kristina Kiesel ◽  
Ardeshir Mahdavi

The success of gastronomic facilities is due, not in a small part, to perceived indoor atmosphere. This includes not just the interior design but also lighting and acoustics. Especially acoustics is a crucial parameter concerning the perception of the environment, but it is often neglected. The present case study investigates the usability and accuracy of acoustics simulation as applied to the retrofit project of a restaurant. The restaurant space was modelled in CAD-based modelling environment. Subsequently, acoustical simulations based on ray tracing were conducted and the simulation model was calibrated based on on-site measurements of the reverberation time. The initial simulation showed large deviations from the measured values, mainly because of uncertainties in the input data concerning the absorption properties of the used materials. Within three calibration steps, the model was revised, such that better results could be achieved. Subsequently both the initial and the calibrated models were used to develop strategies for the improvement of the acoustical performance of the space. After the implementation of the new design options in the restaurant, measurements were repeated. Again the results were compared with both the initial and the calibrated model. The results suggest that the calibrated model displayed a better performance regarding the prediction of post-retrofit circumstances when compared to the non-calibrated one.

Author(s):  
Byungkyu (Brian) Park ◽  
J. D. Schneeberger

Microscopic simulation models have been widely used in both transportation operations and management analyses because simulation is safer, less expensive, and faster than field implementation and testing. While these simulation models can be advantageous to engineers, the models must be calibrated and validated before they can be used to provide meaningful results. However, the transportation profession has not established any formal or consistent guidelines for the development and application of these models. In practice, simulation model–based analyses have often been conducted under default parameter values or bestguessed values. This is mainly due to either difficulties in field data collection or lack of a readily available procedure for simulation model calibration and validation. A procedure was proposed for microscopic simulation model calibration and validation and an example case study is presented with real-world traffic data from Route 50 on Lee Jackson Highway in Fairfax, Virginia. The proposed procedure consisted of nine steps: ( a) measure of effectiveness selection, ( b) data collection, ( c) calibration parameter identification, ( d) experimental design, ( e) run simulation, ( f) surface function development, ( g) candidate parameter set generations, ( h) evaluation, and ( i) validation through new data collection. The case study indicates that the proposed procedure appears to be properly calibrating and validating the VISSIM simulation model for the test-bed network.


2020 ◽  
Vol 11 (01) ◽  
Author(s):  
Saranya Banerjee ◽  
Deepshikha Ray

Twin studies have mostly focused on the pattern of maladaptive behaviour manifested by the twins and their biological basis but the findings have remained controversial till date. The present case study explores the psychopathology in 14 year old twins of Indian origin. They were referred for psychometric assessment and psychotherapy for their conduct problems. The tools administered on them during psychometric assessment are Wechsler Intelligence Scale for Children IV (WISC-IV), Rorschach Inkblot Test (RIBT) and Thematic Apperception Test (TAT). Findings are discussed in terms of the personality processes and relationship quality of the twins.


2004 ◽  
Vol 2 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Carlos Magnavita ◽  
Norbert Schleifer

In the last decades, geophysical methods such as magnetic survey have become a common technique for prospecting archaeological sites. At sub-Saharan archaeological sites, however, magnetic survey and correlated techniques never came into broad use and there are no signs for an immediate change of this situation. This paper examines the magnetic survey undertaken on the Nigerian site of Zilum, a settlement of the Gajiganna Culture (ca 1800-400 BC) located in the Chad Basin and dated to ca 600-400 BC. By means of the present case study, we demonstrate the significance of this particular type of investigation in yielding complementary data for understanding the character of prehistoric settlements. In conclusion, we point out that geophysical methods should play a more important role in modern archaeological field research, as they furnish a class of documentation not achievable by traditional survey and excavation methods, thus creating new perspectives for interpreting the past of African societies.


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Lourenildo W.B. Leite ◽  
J. Mann ◽  
Wildney W.S. Vieira

ABSTRACT. The present case study results from a consistent processing and imaging of marine seismic data from a set collected over sedimentary basins of the East Brazilian Atlantic. Our general aim is... RESUMO. O presente artigo resulta de um processamento e imageamento consistentes de dados sísmicos marinhos de levantamento realizado em bacias sedimentares do Atlântico do Nordeste...


2011 ◽  
Vol 64 (5) ◽  
pp. 1081-1088 ◽  
Author(s):  
Manfred Kleidorfer ◽  
Wolfgang Rauch

The Austrian standard for designing combined sewer overflow (CSO) detention basins introduces the efficiency of the combined sewer overflows as an indicator for CSO pollution. Additionally criteria for the ambient water quality are defined, which comprehend six kinds of impacts. In this paper, the Austrian legal requirements are described and discussed by means of hydrological modelling. This is exemplified with the case study Innsbruck (Austria) including a description for model building and model calibration. Furthermore an example is shown in order to demonstrate how – in this case – the overall system performance could be improved by implementing a cost-effective rearrangement of the storage tanks already available at the inflow of the wastewater treatment plant. However, this guideline also allows more innovative methods for reducing CSO emissions as measures for better usage of storage volume or de-centralised treatment of stormwater runoff because it is based on a sewer system simulation.


Author(s):  
Masakazu Hashimoto ◽  
Kenji Kawaike ◽  
Tomonori Deguchi ◽  
Shammi Haque ◽  
Arpan Paul ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3487
Author(s):  
Helge Nordal ◽  
Idriss El-Thalji

The introduction of Industry 4.0 is expected to revolutionize current maintenance practices by reaching new levels of predictive (detection, diagnosis, and prognosis processes) and prescriptive maintenance analytics. In general, the new maintenance paradigms (predictive and prescriptive) are often difficult to justify because of their multiple inherent trade-offs and hidden systems causalities. The prediction models, in the literature, can be considered as a “black box” that is missing the links between input data, analysis, and final predictions, which makes the industrial adaptability to such models almost impossible. It is also missing enable modeling deterioration based on loading, or considering technical specifications related to detection, diagnosis, and prognosis, which are all decisive for intelligent maintenance purposes. The purpose and scientific contribution of this paper is to present a novel simulation model that enables estimating the lifetime benefits of an industrial asset when an intelligent maintenance management system is utilized as mixed maintenance strategies and the predictive maintenance (PdM) is leveraged into opportunistic intervals. The multi-method simulation modeling approach combining agent-based modeling with system dynamics is applied with a purposefully selected case study to conceptualize and validate the simulation model. Three maintenance strategies (preventive, corrective, and intelligent) and five different scenarios (case study data, manipulated case study data, offshore and onshore reliability data handbook (OREDA) database, physics-based data, and hybrid) are modeled and simulated for a time period of 20 years (175,200 h). Intelligent maintenance is defined as PdM leveraged in opportunistic maintenance intervals. The results clearly demonstrate the possible lifetime benefits of implementing an intelligent maintenance system into the case study as it enhanced the operational availability by 0.268% and reduced corrective maintenance workload by 459 h or 11%. The multi-method simulation model leverages and shows the effect of the physics-based data (deterioration curves), loading profiles, and detection and prediction levels. It is concluded that implementing intelligent maintenance without an effective predictive horizon of the associated PdM and effective frequency of opportunistic maintenance intervals, does not guarantee the gain of its lifetime benefits. Moreover, the case study maintenance data shall be collected in a complete (no missing data) and more accurate manner (use hours instead of date only) and used to continuously upgrade the failure rates and maintenance times.


Sign in / Sign up

Export Citation Format

Share Document