Analysis of Standardized Precipitation Evapotranspiration Index over Chiangrai and Phayao

2019 ◽  
Vol 891 ◽  
pp. 117-126
Author(s):  
Chanattha Saengrattanayon ◽  
Nuttapong Panthong ◽  
Parwapath Phunthirawuthi ◽  
Sukrit Kirtsaeng

Drought indices analysis plays a vital role in flood and drought monitoring and early warning, which is a main responsibility of Thai Meteorological Department (TMD), especially the basins that are limited in use o¬¬f water resources such as Kok and Ing river basins. This study aims to analyze drought situations utilized Standardized Precipitation Evapotranspiration Index (SPEI) at Chiangrai and Phayao provinces (located Kok and Ing basins). Both observed data, precipitation and temperature, are used for calculation (data in between 1951-2018 for Chiangrai and 1981-2018 for Phayao). The result shows that SPEI can determine drought probability and its potential impact in the observed area. This study could be applied to drought monitoring over other basins.

2018 ◽  
Vol 11 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Jamie Hannaford ◽  
Kevin Collins ◽  
Sophie Haines ◽  
Lucy J. Barker

Abstract Drought is widely written about as a complex, multifaceted phenomenon, with complexity arising not just from biophysical drivers, but also human understanding and experiences of drought and its impacts. This has led to a proliferation of different drought definitions and indicators, creating a challenge for the design of drought monitoring and early warning (MEW) systems, which are a key component of drought preparedness. Here, we report on social learning workshops conducted in the United Kingdom aimed at improving the design and operation of drought MEW systems as part of a wider international project including parallel events in the United States and Australia. We highlight key themes for MEW design and use: “types” of droughts, indicators and impacts, uncertainty, capacity and decision-making, communications, and governance. We shed light on the complexity of drought through the multiple framings of the problem by different actors, and how this influences their needs for MEW. Our findings suggest that MEW systems need to embrace this complexity and strive for consistent messaging while also tailoring information for a wide range of audiences in terms of the drought characteristics, temporal and spatial scales, and impacts that are important for their particular decision-making processes. We end with recommendations to facilitate this approach.


Author(s):  
D. Kolekar ◽  
V. S. K. Vanama ◽  
Y. S. Rao

<p><strong>Abstract.</strong> Climatological variables such as rainfall, temperature have been extensively used by researchers for drought monitoring at a larger spatial region. These variables have a direct influence on the soil moisture which in turn extends the application of soil moisture in drought assessment. With the advancement of technology, various satellites provide soil moisture data at different spatio-temporal resolutions. In this article, soil moisture obtained from Soil Moisture Ocean Salinity (SMOS) is used to analyze the drought condition over Latur district in Maharashtra, India. The monthly soil moisture derived by averaging the daily data for the years 2010 to 2015 is compared with two drought indices, i.e. Standardized Precipitation Index (SPI) calculated for years 2010 to 2015 and Standardized Precipitation-Evapotranspiration Index (SPEI) calculated for years 2010 to 2013. Even though the overall correlation among the indices with the soil moisture is not significant, the seasonal (summer) correlation is significant. From the results, it is identified that SMOS derived soil moisture can be used as a potential parameter in drought assessment.</p>


2016 ◽  
Vol 20 (7) ◽  
pp. 2589-2609 ◽  
Author(s):  
S. Bachmair ◽  
C. Svensson ◽  
J. Hannaford ◽  
L. J. Barker ◽  
K. Stahl

Abstract. Drought monitoring and early warning is an important measure to enhance resilience towards drought. While there are numerous operational systems using different drought indicators, there is no consensus on which indicator best represents drought impact occurrence for any given sector. Furthermore, thresholds are widely applied in these indicators but, to date, little empirical evidence exists as to which indicator thresholds trigger impacts on society, the economy, and ecosystems. The main obstacle for evaluating commonly used drought indicators is a lack of information on drought impacts. Our aim was therefore to exploit text-based data from the European Drought Impact report Inventory (EDII) to identify indicators that are meaningful for region-, sector-, and season-specific impact occurrence, and to empirically determine indicator thresholds. In addition, we tested the predictability of impact occurrence based on the best-performing indicators. To achieve these aims we applied a correlation analysis and an ensemble regression tree approach, using Germany and the UK (the most data-rich countries in the EDII) as test beds. As candidate indicators we chose two meteorological indicators (Standardized Precipitation Index, SPI, and Standardized Precipitation Evaporation Index, SPEI) and two hydrological indicators (streamflow and groundwater level percentiles). The analysis revealed that accumulation periods of SPI and SPEI best linked to impact occurrence are longer for the UK compared with Germany, but there is variability within each country, among impact categories and, to some degree, seasons. The median of regression tree splitting values, which we regard as estimates of thresholds of impact occurrence, was around −1 for SPI and SPEI in the UK; distinct differences between northern/northeastern vs. southern/central regions were found for Germany. Predictions with the ensemble regression tree approach yielded reasonable results for regions with good impact data coverage. The predictions also provided insights into the EDII, in particular highlighting drought events where missing impact reports may reflect a lack of recording rather than true absence of impacts. Overall, the presented quantitative framework proved to be a useful tool for evaluating drought indicators, and to model impact occurrence. In summary, this study demonstrates the information gain for drought monitoring and early warning through impact data collection and analysis. It highlights the important role that quantitative analysis with impact data can have in providing "ground truth" for drought indicators, alongside more traditional stakeholder-led approaches.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel H. Mlenga ◽  
Andries J. Jordaan

The spatiotemporal analysis of drought is of great importance to Eswatini as the country has been facing recurring droughts with negative impacts on agriculture, the environment and the economy. In 2016, the country experienced the most severe drought in over 35 years, resulting in food shortages, drying up of rivers as well as livestock deaths. The frequent occurrence of extreme drought events makes the use of drought indices essential for drought monitoring, early warning and planning. The aim of this study was to assess the applicability of the Standard Precipitation Index (SPI) for near real-time and retrospective drought monitoring in Eswatini. The 3-, 6- and 12-month SPI were computed to analyse the severity and onset of meteorological drought between 1986 and 2017. The results indicated that the climate of Eswatini exhibits geospatial and temporal variability. Droughts intensified in terms of frequency, severity and geospatial coverage, with the worst drought years being 1985–1986, 2005–2006 and 2015–2016 agricultural seasons. Moderate droughts were the most prevalent, while the frequency of severe and very severe droughts was low. Most parts of the country were vulnerable to mild and moderate agricultural droughts. Spatial analysis showed that the most severe and extreme droughts were mostly experienced in the Lowveld and Middleveld agro-ecological zones. The 3-, 6- and 12-month SPI computations conducted in January detected the onset of early season drought, thereby affirming the applicability of the index for monitoring near real-time and retrospective droughts in Eswatini. Drought monitoring using the SPI provides information for early warning, particularly in drought-prone areas, by depicting a drought before the effects are felt.


Sign in / Sign up

Export Citation Format

Share Document