scholarly journals Utility approach for multi target streamlining of process parameters in wire EDM

2018 ◽  
Vol 172 ◽  
pp. 04006
Author(s):  
A. Muniappan ◽  
M. Ajithkumar ◽  
V. Jayakumar ◽  
C. Thiagarajan ◽  
M. Sreenivasulu

This paper depicts the improvement of multireaction enhancement system utilizing utility technique to foresee and select the ideal setting of machining parameters in wire electro-release machining (WEDM) process. Investigations were arranged utilizing Taguchi's L27 orthogonal exhibit. A wide range of Wire EDM control variables such as pulse on time duration, pulse off time duration, servo voltage along with wire feed rate were judged for investigation. Multi reaction enhancement was performed for both cutting pace (CS) and surface unpleasantness (SR) utilizing utility idea to discover the ideal procedure parameter setting. The level of essentialness of the machining parameters for their impact on the CS and SR were controlled by utilizing investigation of fluctuation (ANOVA). In present study utility approach method used to optimize the process parameter in wire EDM of magnesium Al6061/SiC/Graphite hybrid composite with zinc covered brass wire electrode. The approach depicted here is relied upon to be profoundly useful to assembling enterprises, and furthermore different territories, for example, aviation, car and apparatus making businesses. The parameters corresponding to experiment run number 7 are pulse on time 108 units (Level 1), pulse off time 60 units (Level 3), peak current 230 units (Level 3), gap set voltage 60 units (Level 3), wire feed 3 units (Level 1) and wire tension 4 units (Level 1) are the best combination to achieve better surface roughness and cutting speed.

Author(s):  
Gregory Bicknell ◽  
Guha Manogharan

Wire electric discharge machining (EDM) is a non-traditional machining method that has the ability to machine hard, conductive materials, with no force and high precision. This technology is used in industries, like the aerospace industry, to create precision parts used in high stress applications. Wire EDM is also commonly used in additive manufacturing (AM) applications to remove printed parts from the base-plates onto which they are printed. Numerous studies show the effects of EDM parameters, like pulse-on time, pulse-off time, and cutting voltage, on the processing of traditionally fabricated metal parts. However, very few studies identify how the parameters of wire EDM affect the processing of AM parts. This paper studies the effect of wire EDM pulse-on time, pulse-off time, and cutting voltage on the machining time, surface roughness, and hardness of additively manufactured 316L stainless steel cylinders. The effects of these wire EDM parameters are then tested on the machining time, surface roughness, and hardness of wrought 316L stainless steel cylinders. It was found that machining time of AM samples was statistically significantly lower than wrought samples and also had better surface finish and lower surface hardness.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mangesh R. Phate ◽  
Shraddha B. Toney ◽  
Vikas R. Phate

Aluminium silicate metal matrix composite (AlSiC MMC) is satisfying the requirement of material with good mechanical, thermal properties, and good wear resistance. But the difficulties during the machining are the main hurdles to its replacement for other materials. Wire electric discharge machining (WEDM) is a very effective process used for this type of difficult-to-cut material. So an effort has been taken to find out the most favourable level of input parameters for WEDM of AlSiC (20%) composite using a Taguchi-based hybrid grey-fuzzy grade (GFG) approach. The plan for experimentation is designed using Taguchi’s L9 (23) array. The various process parameters considered for the investigation are pulse on time (TON), pulse off time (TOFF), wire feed rate (WFR), and peak current (IP). Surface integrity such as surface roughness measured during the different types of cutting (along straight, inclined, and curvature directions) is considered in the present work. Grey relational analysis (GRA) pooled with the fuzzy logic is effectively used to find out the grey-fuzzy reasoning grade (GFRG). The Taguchi approach is coupled with the GFRG to obtain the optimum set of process parameters. From the experimental findings, it has been observed that the most economical process parameters for WEDM of AlSiCp20 were the pulse on time is 108 microsec, pulse off time is 56 microsec, wire feed rate (WFR) is 4 m/min, and peak current (IP) is 11 amp. From the analysis of variance (ANOVA), it is observed that the pulse on time is the foremost influencing parameters that contribute towards GFRG by 52.61%, followed by the wire feed rate (WFR) 38.32% and the current by 5.45%.


2018 ◽  
Vol 172 ◽  
pp. 04010
Author(s):  
A. Muniappan ◽  
R. Senthilkumar ◽  
V. Jayakumar ◽  
S. Venkata Ravikumar ◽  
P. Sai Tarunkumar

The present study focused on the multiple regression modeling and predicting the surface roughness of the Aluminum hybrid composite during the WEDM process. The hybrid MMC was manufactured by process named as stir casting utilizing particulates of Silicon carbide and graphite each in Al6061 combination. The analyses were outlined with Taguchi L27 design matrix. Mathematical relationships between the surface roughness and WEDM cutting parameters (Pulse on time, Pulse off time, current, gap voltage, wire speed and wire tension) have been investigated. The results show that the multiple regression analysis is a successful method for developing a mathematical model to predict the surface roughness. The optimum value of process parameters for the predicted optimum value of surface roughness (1.285) is pulse on time 106 units (Level 1), pulse off time 60 units (Level 3), peak current 90 units (Level 2), gap set voltage 50 units (Level 3), wire speed3 units (Level 1) and wire tension 12 units (Level 3).The optimum results are adopted in validation study and the results based on WEDM process responses can be effectively improved.


2019 ◽  
Vol 895 ◽  
pp. 181-186
Author(s):  
Rajesh Khanna ◽  
Neeraj Sharma ◽  
Rahul Dev Gupta

Wire electric discharge machine (WEDM) is a non-conventional machining process used to machine the hard to cut materials. WEDM has wide applications in die and punch industries, automobile, aerospace and medical industries. In this process the material is processed with the help of a wire electrode. In present work, Al6063/SiC/Ti composite was processed with the help of WEDM. As this spark-erosion machine tool have number of input process parameters, so to process any material it became mandatory to investigate the range of the machining parameters in which machine tool operate successfully. Every material represents its unique material characteristics due to which it can be machined successfully in a limited range of the parameters. Above and below this range the wire will break abruptly. So, in this present work an attempt has been made to investigate the range of the process parameters in which WEDM can process Al6063/SiC/Ti composite efficiently. The input parameters considered for the present work are pulse on-time, pulse off-time, servo voltage, peak current, wire feed and wire tension. After the experiments it was found that the pulse on-time, pulse off-time, servo voltage and wire-feed were the significant process parameters in the investigations of cutting rate and surface roughness.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


Author(s):  
Debal Pramanik ◽  
Dipankar Bose

An important electro-thermal process known as wire electrical discharge machining (WEDM) is applied for machining of conductive materials to generate most precisely. All cutting inaccuracies of WEDM arise out of the major cause of wire bending. At the time of cutting a sharp corner or cut profile, bending of the wire leads to a geometrical error on the workpiece. Though this type of error may be of a few hundred microns, it is not suitable for micro applications. In this research study, an experimental investigation based on response surface methodology (RSM) has been done on wire EDM of Aluminium 6061 t6 alloy. This chapter studies the outcome of input process variables (i.e., wire feed rate, pulse on time, pulse off time, and gap voltage) on machining output responses (i.e., corner inaccuracy) extensively. Experimental validation of the proposed model shows that corner inaccuracy value may be reduced by modification of input parameters.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3470 ◽  
Author(s):  
Vivek Aggarwal ◽  
Catalin Iulian Pruncu ◽  
Jujhar Singh ◽  
Shubham Sharma ◽  
Danil Yurievich Pimenov

Monel K-500, a nickel–copper based alloy, is a very hard and tough material. Machining of such hard and tough materials always becomes a challenge for industry and this has been resolved by wire electric discharge machining (WEDM), a popular non-conventional machining method used for machining tough and hard materials having complex shapes. For the first time reported in this present research work is an experimental investigation executed on Ni-27Cu-3.15Al-2Fe-1.5Mn based superalloy using WEDM to model cutting rate (CR) and surface roughness (SR) using response surface methodology (RSM). The process parameters have been selected as pulse-on time, pulse-off time, spark-gap voltage and wire-feed rate. Experiments have been planned according to the central composite design (CCD). The results show that pulse-on time has a direct effect on CR while the pulse-off time has a reverse effect. The CR increases as pulse-on time increases, and decreases as pulse-off time increases. SR increases as pulse-on time increases, and decreases as pulse-off time increases. Furthermore, increase in spark-gap voltage decreases CR and SR both. The wire feed-rate has a negligible effect for both the response parameters. The optimized values of CR and SR achieved through multi-response optimization are 2.48 mm/min and 2.12 µm, respectively.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 542
Author(s):  
Harshalkumar R. Mundane ◽  
Dr. A. V. Kale ◽  
Dr. J. P. Giri

EDM (Spark erosion) is non-conventional machining process which uses as removing unwanted material by electrical spark erosion. EDM Machining parameters affecting to the performance and the industries goal is to produce high quality of product with less time consuming and cost. To achieve these goals, optimizing the machining parameters such as pulse on time, pulse off time, cutting speed, depth of cut, duty cycle, arc gap, voltage etc. The performance measure of EDM is calculated on the basis of Material Remove Rate(MRR), Tool Wear Rate(TWR), and Surface Roughness(SR).The main objective of present work is to investigate of the influence of input EDM (Electro Discharge Machining) parameters on machining characteristics like surface roughness and the effects of various EDM process parameters such as pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, on different process response parameters such as material removal rate (MRR), surface roughness (Ra), Kerf (width of Cut), tool wear ratio(TWR)and surface integrity factors. In this paper few selected research paper related to Die-sinker EDM with effect of MRR, TWR, surface roughness (SR) and work piece material have been discussed.   


2015 ◽  
Vol 813-814 ◽  
pp. 357-361
Author(s):  
T. Rajmohan ◽  
Gopi Krishna ◽  
Ankit Kumar Singh ◽  
A.P.V. Swamy Naidu

In this investigation, a new approach is based on Grey Relational Analysis and Taguchi method to optimize the machining parameters with multi performance characteristics in WEDM of 304L SS. Experiments are conducted using Taguchi Quality Concept, L9,3-level orthogonal array was chosen for experiments .The WEDM parameters namely pulse-on time (TON), pulse-off time (TOFF), and wire feed (WF) on material removal rate (MRR) .The Grey Relational Analysis with multiple performance characteristics indicates that the pulse-on time (TON), pulse-off time (TOFF) are the most significant factors . The optimum machining parameters have been identified by Grey relational analysis and significant contribution of parameters can be determined by analysis of variance (ANOVA). The confirmation test is also conducted to validate the test result. The results from this study will be useful for manufacturing engineers to select appropriate WEDM process parameters to machine 304L Stainless Steel.


Sign in / Sign up

Export Citation Format

Share Document