Analytical Calculation, Numerical Structural Analysis and Design Optimization of the Diaphragm Spring of a Mechanical Clutch

2020 ◽  
Vol 896 ◽  
pp. 151-162
Author(s):  
Mario Trotea ◽  
Augustin Constantinescu ◽  
Loreta Simniceanu

This paper considers the diaphragm spring of a mechanical clutch being composed by a conical disk spring and trapezoidal lamellar springs attached to the disk spring. After analytical calculation of the disk spring a numerical structural analysis was performed in order to validate the 3D model of the disk spring. A design optimization with 4 design variables was done for the disk spring and, based on the optimized design, the 3D model of the diaphragm spring was built. A 6 design variables model of the diaphragm spring was proposed for design optimization analysis having as design objective the minimization of the maximum equivalent stress during disengaging the clutch.

Author(s):  
Saqib Parvaze Allaie ◽  
Ashok Tripathi ◽  
P. M. Dsouza ◽  
Sabah Parvaze

Technologies and computer programs available today provide us with design programs and analytical techniques for solving complex problems in the different engineering disciplines. These technologies and programs have also found their significance in agricultural research. Computer-aided mathematical modelling was used for carrying out the design optimization of a straight subsoiler. At the initial stage, the static structural analysis under static loading conditions was performed. Details on the material and dimensions for the subsoiler were acquired from the manufacturer at the regional level. The existing subsoiler was then optimized for shank thickness, curve length, and shank width. Optimization was carried out for the objectives seeking minimum solid mass and maximum safety factor. The optimized design obtained was remodeled, and its static analysis performed. Results of the stresses, deformation, and safety factor before and after optimization were compared, and the conclusions drawn. The static structural analysis revealed that before optimization, the subsoiler mass was 24.54 kg, and the volume was 3117701.77 mm3. The maximum total deformation was 4.959 mm, maximum equivalent stress was 270.09 MPa, and the maximum principal stress was 295.06 MPa.  The minimum value for the safety factor was 1.296. Parametric correlation of the input and output parameters showed that the relationship among two input parameters viz. shank thickness, shank width, and output parameters was strong. These input parameters were used for response surface generation and design optimization. Optimization reduced both the subsoiler mass and volume by 14.86 %. The maximum equivalent stress and maximum principal stress reduced by 4.10% and 5.39%, respectively, while the total deformation, minimum safety factor, and maximum working life increased by 7.15%, 4.28%, and 14.26%, respectively.


2012 ◽  
Vol 215-216 ◽  
pp. 239-243
Author(s):  
Ming Hui Zhang ◽  
Di Zhang ◽  
Yong Hui Xie

As the main bearing part in a turbine blade, the root carries most of the loads of the whole blade. The improvement of the root structure can be used to enhance the operation reliability of steam turbine. The research on design optimization for double-T root and rim of a turbine blade was conducted by three-dimensional finite element method. Based on the APDL (ANSYS parametric design language), a multi-variable parametric model of the double-T root and rim was established. Twelve characteristic geometrical variables of the root-rim were optimized to minimize the maximum equivalent stress. The optimal structure of the double-T root-rim is obtained through the optimization. Compared with the original structure, the equivalent stress level of the root and rim has a significant reduction. Specifically, the maximum equivalent stress of root and rim reduces by 14.25% and 13.59%, respectively.


2020 ◽  
Author(s):  
Thanasis Barlas ◽  
Néstor Ramos-García ◽  
Georg Raimund Pirrung ◽  
Sergio González Horcas

Abstract. Advanced aeroelastically optimized tip extensions are among rotor innovation concepts which could contribute to higher performance and lower cost of wind turbines. A novel design optimization framework for wind turbine blade tip extensions, based on surrogate aeroelastic modeling is presented. An academic wind turbine is modelled in an aeroelastic code equipped with a near wake aerodynamic module, and tip extensions with complex shapes are parametrized using 11 design variables. The design space is explored via full aeroelastic simulations in extreme turbulence and a surrogate model is fitted to the data. Direct optimization is performed based on the surrogate model, seeking to maximize the power of the retrofitted turbine within the ultimate load constraints. The presented optimized design achieves a load neutral gain of up to 6 % in annual energy production. Its performance is further evaluated in detail by means of the near wake model used for the generation of the surrogate model, and compared with a higher fidelity aerodynamic module comprising a hybrid filament-particle-mesh vortex method with a lifting-line implementation. A good agreement between the solvers is obtained at low turbulence levels, while differences in predicted power and flap-wise blade root bending moment grow with increasing turbulence intensity.


1999 ◽  
Vol 7 (6) ◽  
pp. 589-599 ◽  
Author(s):  
Yuanxian Gu ◽  
Hongwu Zhang ◽  
Zhenqun Guan ◽  
Zhan Kang ◽  
Yunpeng Li ◽  
...  

2011 ◽  
Vol 675-677 ◽  
pp. 263-266
Author(s):  
Ke Zhang ◽  
Ju Ping Ren ◽  
Guo Zhi Liu ◽  
Yu Lan Tang ◽  
Yu Hou Wu

A 3D model of molecular dynamics for nanoceramic SiC is adopted to simulate the hot pressing sintering and preparation process of SiC, and mechanical properties such as density, hardness and elastic modulus are calculated. Finite element model of indentation is established based on the mechanical performance parameters from MD simulation. Conical indenter is adopted in indentation simulation. The FEM simulation results show that: Maximum equivalent stress appears at the place of indenter tip, and equivalent stress curves are appeared hemispherical. As indentation depth increases, the stress increased. As the distance of away from the indenter increases, the displacement in equivalent displacement nephogram gradually decreased until zero. During unloading process, elastic restitution is occurred. The elastic restitution in the area of below the indenter is obviously. Residual stress in the center of indentation is maximal after unloading.


2014 ◽  
Vol 945-949 ◽  
pp. 653-657
Author(s):  
Wan Peng Du ◽  
Yong Jian Zhang ◽  
Chen Quan Zhou ◽  
Ai Hui Zhang ◽  
Ji Yu ◽  
...  

The object is dismantling machine shear head with 500kN’s maximum shear force. The three-dimensional models, static analysis, topology optimization were done in the ANSYS Workbench. And the goal driven optimization was done which based on topology optimization. The maximum total deformation, maximum equivalent stress and geometry mass were selected as objective parameters and the distance of two connecting holes, diameter of long hole and length of blade as design variables. At last, the optimized structure was checked. The strength and rigidity meet the requirements and the mass decreased.


2013 ◽  
Vol 2013 ◽  
pp. 1-33 ◽  
Author(s):  
Mehmet Polat Saka ◽  
Zong Woo Geem

The type of mathematical modeling selected for the optimum design problems of steel skeletal frames affects the size and mathematical complexity of the programming problem obtained. Survey on the structural optimization literature reveals that there are basically two types of design optimization formulation. In the first type only cross sectional properties of frame members are taken as design variables. In such formulation when the values of design variables change during design cycles, it becomes necessary to analyze the structure and update the response of steel frame to the external loading. Structural analysis in this type is a complementary part of the design process. In the second type joint coordinates are also treated as design variables in addition to the cross sectional properties of members. Such formulation eliminates the necessity of carrying out structural analysis in every design cycle. The values of the joint displacements are determined by the optimization techniques in addition to cross sectional properties. The structural optimization literature contains structural design algorithms that make use of both type of formulation. In this study a review is carried out on mathematical and metaheuristic algorithms where the effect of the mathematical modeling on the efficiency of these algorithms is discussed.


2012 ◽  
Vol 479-481 ◽  
pp. 1863-1867
Author(s):  
Shou Guang Yao ◽  
Sheng Chen Zhao ◽  
Fei Liu

Based on the multidisciplinary design optimization method and the MDO software ISIGHT, the 16PA6STC diesel engine connecting rod was taken to the model, used the Pro/engineer software to build the 3D model of connecting rod. The software ANSYS and Nastran was taken to complete the static analysis and modal analysis to get the maximum equivalent stress and the first and second modal frequencies. the software including Pro/Engineer、ANSYS、Nastran, was combined on the ISIGHT to complete the structural optimization work on the condition of restrain the stress and modal of the connecting rod, to explore the application of the MDO design method in the diesel engine connecting rod structure optimization field, offer a reference for the further improvement design study.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yang Liu ◽  
Qi Yuan ◽  
Guangyu Zhu ◽  
Pu Li

The rotor is the core component of a gas turbine, and more than 80% of the failures in gas turbines occur in the rotor system, especially during the start-up period. Therefore, the safety assessment of the rotor during the start-up period is essential for the design of the gas turbine. In this paper, the transient equivalent stress of a gas turbine rotor under the cold start-up condition is investigated and the novel tie rod structure is introduced to reduce the equivalent stress. Firstly, a three-dimensional finite element model of the gas turbine rotor is built, and nonlinear contact behaviors such as friction are taken into account. Secondly, the convective heat transfer coefficients of the gas turbine rotor under the cold start-up condition are calculated using thermal dynamic theory. The transient analysis of the gas turbine rotor is conducted considering the thermal load, the centrifugal load, and the pretightening force. The temperature and stress distributions of the rotor under the cold start-up condition are shown in detail. In particular, the generation mechanism of maximum equivalent stress for tie rods and the change tendency of the pretightening force are illustrated in detail. The tie rod holes of the rear shaft and the turbine tie rod are the dangerous locations during the start-up period. Finally, a novel tie rod is proposed to reduce the maximum equivalent stress at the dangerous location. The maximum equivalent stress at this location is decreased by 15%. This paper provides some reference for the design of the gas turbine rotor.


Sign in / Sign up

Export Citation Format

Share Document