Dynamic Stability Analysis of K8 Single-Layer Latticed Shell Structures Suffered from Earthquakes

2011 ◽  
Vol 94-96 ◽  
pp. 52-56
Author(s):  
Wen Feng Du ◽  
Fu Dong Yu ◽  
Zhi Yong Zhou

Aiming at the dynamic stability of the K8 single-layer latticed shell structures, it was carried out the dynamic stability analysis based on the finite element method(FEM) in this paper. The dynamic responses of the structure are calculated using the FEM and the B-R rule is applied to determine the dynamic instability critical loads. Results show that the dynamic instability is prone to take place in the K8 single-layer latticed shell structures under the severe seismic load and the dynamic instability critical seismic wave peak value is about 0.7g. The location of instability starts from the intersection between the third circular members and the radial members, then it spreads abroad until the structure collapses.

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Liaojun Zhang ◽  
Tianxiao Ma ◽  
Hanyun Zhang ◽  
Dongsheng Chen

The instability of dams will bring immeasurable personal and property losses to the downstream, so it has always been a trendy topic worthy of investigation. Currently, the rigid body limit equilibrium method is the most commonly used method for the dynamic stability analysis of dams. However, under the action of earthquakes, the instability of the integral dam-foundation system threatens the safety of the dams and is of great concern. In this paper, a stability analysis method that can reflect the complex geological structural forms of dam foundations is proposed in this paper. The advantages are that this method deals with the difficulty in assuming sliding surfaces and the lack of quantitative criteria for the dynamic instability analysis of dams with complex geological structural forms of dam foundations. In addition, through the method, the sliding channels that may appear in the dam foundations can be automatically searched under random earthquake action, and the safety factors of the dynamic instability of dams be quantitatively obtained. Taking a high RCC gravity dam under construction in China as an example, the proposed method is applied to the three-dimensional finite element model of the dam-foundation system of this dam, and then the dynamic stability calculation is carried out. Through this method, the formation process of the dam foundation’s plastic zone and the failure of sliding channels with different strength reduction coefficients are studied on and analyzed detailedly, and the quantitative acquisition of the safety factors is realized. The results show that the method is reasonable and feasible, and helps provide a new idea and method for the dynamic stability analysis of dams.


1992 ◽  
Vol 114 (3) ◽  
pp. 326-329 ◽  
Author(s):  
Lien-Wen Chen ◽  
Der-Ming Ku

The dynamic stability behavior of a cantilever shaft-disk system subjected to axial periodic forces varying with time is studied by the finite element method. The equations of motion for such a system are formulated using deformation shape functions developed from Timoshenko beam theory. The effects of translational and rotatory inertia, gyroscopic moment, bending and shear deformation are included in the mathematical model. Numerical results show that the effect of the gyroscopic term is to shift the boundaries of the regions of dynamic instability outwardly and, therefore, the sizes of these regions are enlarged as the rotational speed increases.


1976 ◽  
Vol 98 (4) ◽  
pp. 1145-1149 ◽  
Author(s):  
J. Thomas ◽  
B. A. H. Abbas

A Finite Element model is developed for the stability analysis of Timoshenko beam subjected to periodic axial loads. The effect of the shear deformation on the static buckling loads is studied by finite element method. The results obtained show excellent agreement with those obtained by other analytical methods for the first three buckling loads. The effect of shear deformation and for the first time the effect of rotary inertia on the regions of dynamic instability are investigated. The elastic stiffness, geometric stiffness, and inertia matrices are developed and presented in this paper for a Timoshenko beam. The matrix equation for the dynamic stability analysis is derived and solved for hinged-hinged and cantilevered Timoshenko beams and the results are presented. Values of critical loads for beams with various shear parameters are presented in a graphical form. First four regions of dynamic instability for different values of rotary inertia parameters are presented. As the rotary inertia parameter increases the regions of instability get closer to each other and the width of the regions increases thus making the beam more sensitive to periodic forces.


1980 ◽  
Vol 22 (1) ◽  
pp. 37-39
Author(s):  
J. Thomas ◽  
B. A. H. Abbas

This paper presents the results of an investigation of the dynamic stability of steel off-shore platforms subjected to vertical and horizontal forces. A computer program based on the finite-element method was developed to calculate the frequencies of vibration, the buckling load, and the regions of dynamic instability.


Author(s):  
Katsuhisa Fujita ◽  
Taisuke Nosaka ◽  
Tomohiro Ito

Many structures such as support columns such as those for elevated expressways and towers tend to become larger and more flexible recently, thus the buckling or collapse of these structures is considered to easily occur than ever due to huge earthquakes. Actually, in the Hyogo-ken Nambu earthquake in Japan, buckling phenomena of tall support columns were observed every-where. Therefore, the evaluation technology on the dynamic stability is very important in order to ensure the seismic design reliability for these structures. The authors have ever studied the effects of the horizontal and vertical simultaneous excitations on the above-mentioned buckling phenomena of support columns experimentally. More-over, they also investigated the fundamental phenomena of the dynamic stability of the support columns subjected to the horizontal and vertical excitations simultaneously by numerical simulations using an analytical model where the support column is treated as a tall elastic cantilever beam. The purpose of this paper is on the dynamic instability, that is dynamic buckling, of a cylindrical shell structures such as those for elevated expressways, towers, containment vessels, LNG tanks and water tanks in various industrial plants so on subjected to horizontal and vertical excitations simultaneously. The coupled motion of equation with horizontal and vertical excitations simultaneously for these cylindrical shell structures is derived in this paper, and this modeling is shown to become a Mathieu type’s parametric excitation. The numerical simulation analysis is carried out for a cylindrical shell model with an attached mass on its tip. Comparing with the classical seismic analysis method, this proposed dynamic instability analysis method shows the larger deformation in horizontal direction due to the parametric excitation of the vertical seismic wave. As the results, the structures are apt to lose the structural stability more due to the coupling effects between the horizontal and vertical seismic simultaneous loadings.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Rosalin Sahoo ◽  
B. N. Singh

A structure with periodic dynamic load may lead to dynamic instability due to parametric resonance. In the present work, the dynamic stability analysis of laminated composite and sandwich plate due to in-plane periodic loads is studied based on recently developed inverse trigonometric zigzag theory (ITZZT). Transverse shear stress continuity at layer interfaces along with traction-free boundary conditions on the plate surfaces is satisfied by the model obviating the need of shear correction factor. An efficient C0 continuous, eight noded isoparametric element with seven field variable is employed for the dynamic stability analysis of laminated composite and sandwich plates. The boundaries of instability regions are determined using Bolotin's approach and the first instability zone is presented either in the nondimensional load amplitude–excitation frequency plane or load amplitude–load frequency plane. The influences of various parameters such as degrees of orthotropy, span-thickness ratios, boundary conditions, static load factors, and thickness ratios on the dynamic instability regions (DIRs) are studied by solving a number of problems. The evaluated results are validated with the available results in the literature based on different deformation theories. The efficiency of the present model is ascertained by the improved accuracy of predicted results at the cost of less computational involvement.


Sign in / Sign up

Export Citation Format

Share Document