Research of Possibilities of Using the Recycled Materials Based on Rubber and Textiles Combined with Vermiculite Material in the Area of ​​Noise Reduction

2014 ◽  
Vol 1001 ◽  
pp. 171-176 ◽  
Author(s):  
Pavol Liptai ◽  
Marek Moravec ◽  
Miroslav Badida

This paper describes possibilities in the use of recycled rubber granules and textile materials combined with vermiculite panel. The aim of the research is the application of materials that will be absorbing or reflecting sound energy. This objective is based on fundamental physical principles of materials research and acoustics. Method of measurement of sound absorption coefficient is based on the principle of standing wave in the impedance tube. With a sound level meter is measured maximum and minimum sound pressure level of standing wave. From the maximum and minimum sound pressure level of standing wave is calculated sound absorption coefficient αn, which can take values from 0 to 1. Determination of the sound absorption coefficient has been set in 1/3 octave band and in the frequency range from 50 Hz to 2000 Hz. In conclusion are proposed possibilities of application of these materials in terms of their mechanical and physical parameters.

Author(s):  
Mohammad Javad Zare Sakhvidi ◽  
Hamideh Bidel ◽  
Ahmad Ali Kheirandish

 Background: Chronic occupational exposure to noise is an unavoidable reality in the country's textile industry and even other countries. The aim of this study was to compare the sound pressure level in different parts of the textile industry in Yazd and in different parts of the textile industry. Methods: This cross-sectional study was performed on 930 textile workers in Yazd. A questionnaire was used to obtain demographic information and how to use protective equipment. Then, to obtain the sound pressure level of each unit and device and to use the measurement principles, a calibrated sound level meter was used. Then the results were analyzed using SPSS Ver.29 software. Results: The participants in this study were 714 males and 216 females with a mean age of 35.27 and 33.63 years, respectively. Seven hundred fifty-six participants (81.29%) were exposed to sound pressure levels higher than 85 dB. Among the participants, only 18.39% of the people used a protective phone permanently. Except for factory E, with an average sound pressure level of 77.78 dB, the rest of the factories had an average sound pressure level higher than the occupational exposure limit. The sound measurement results of different devices show that the sound pressure levels above 90 dB are related to the parts of Dolatab, Ring, Kinetting (knitting), Chanel, Autoconer, Dolakni, Open End, MultiLakni, Tabandegi, Texture, and Poy. Conclusion: Based on the results of the present study, noise above 90 dB is considered as one of the main risk factors in most parts of the textile industry (spinning and weaving), which in the absence of engineering, managerial or individual controls on it causes hearing loss in becoming employees of this industry


2002 ◽  
Vol 33 (8) ◽  
pp. 16-24
Author(s):  
Jesús Alba Fernández ◽  
Marcelino Ferri García ◽  
Jaime Ramis Soriano ◽  
Juan Antonio Martínez Mora

In environmental acoustics the knowledge of the time dependency of the sound level provides relevant information about a sound event. In this sense, it may be said that conventional sound level metres have frequently implemented programs to calculate the fractiles (percentiles) of the distribution of instantaneous sound levels; and there are several indexes to evaluate the noise pollution, based on different statistical parameters. For further analysis of sound, and to obtain the commented indexes, it is accepted that this distribution is normal or gaussian. The questions we've tried to solve in this work are the following: First of all, whether the time dependent distribution of the variable sound pressure level should be considered as Gaussian in general cases or only in some particular ones. On the other hand, we have studied how the frequency of the sampling affects the resulting distribution of a given a sound event. To these ends, a set of road traffic noise events has been evaluated. Furthermore, even in gaussian distributions of sound pressure levels, the average of the distribution will not be coincident with the equivalent sound pressure level; that is the level of the average quadratic pressure. The difference between this parameter, and its dependence on the standard deviation, is studied.


2000 ◽  
Vol 34 (2) ◽  
pp. 136-144 ◽  
Author(s):  
E. Böjrk ◽  
T. Nevalainen ◽  
M. Hakumäki ◽  
H.-M. Voipio

Since sounds may induce physiological and behavioural changes in animals, it is necessary to assess and define the acoustic environment in laboratory animal facilities. Sound studies usually express sound levels as unweighted linear sound pressure levels. However, because a linear scale does not take account of hearing sensitivity-which may differ widely both between and within species at various frequencies-the results may be spurious. In this study a novel sound pressure level weighting for rats, R-weighting, was calculated according to a rat's hearing sensitivity. The sound level of a white noise signal was assessed using R-weighting, with H-weighting tailored for humans, A-weighting and linear sound pressure level combined with the response curves of two different loudspeakers. The sound signal resulted in different sound levels depending on the weighting and the type of loudspeaker. With a tweeter speaker reproducing sounds at high frequencies audible to a rat, R- and A-weightings gave similar results, but the H-weighted sound levels were lower. With a middle-range loudspeaker, unable to reproduce high frequencies, R-weighted sound showed the lowest sound levels. In conclusion, without a correct weighting system and proper equipment, the final sound level of an exposure stimulus can differ by several decibels from that intended. To achieve reliable and comparable results, standardization of sound experiments and assessment of the environment in animal facilities is a necessity. Hence, the use of appropriate species-specific sound pressure level weighting is essential. R-weighting for rats in sound studies is recommended.


2020 ◽  
Vol 10 (3) ◽  
pp. 849 ◽  
Author(s):  
Yoshiharu Soeta ◽  
Hiroko Kagawa

Birdsong is used as a sound signal for visually impaired people in train stations in Japan. However, such sound signals were reportedly difficult to be localized by over 40% of visually impaired people. More than 40% of visually impaired people reported that such sound signals were difficult to identify. The sound pressure level of birdsong is typically low because higher levels of birdsong can cause annoyance to users or residents. Therefore, preferences for birdsong should be investigated. Importantly, birdsong and insect song have been shown to have a positive effect on soundscapes. However, preferences for different types of birdsong and insect song have not been investigated. The current study sought to clarify which types of birdsong and insect song are preferred, and to determine the dominant physical parameters that relate to the preference. We evaluated subjective preferences for various types of birdsong and insect song using paired comparison tests. The relationships between subjective preference and physical parameters were examined. The results indicated that Horornis diphone and Teleogryllus emma were the most preferred types of birdsong and insect song, both of which are common in Japan. The maximum peak amplitude of the autocorrelation function, determinants of which are pitch salience, loudness, and spectral content, such as centroid, flux, and rolloff, are significant parameters influencing subjective preference.


2019 ◽  
Vol 111 ◽  
pp. 06072 ◽  
Author(s):  
Tiberiu Catalina ◽  
Alexandra Ene ◽  
Andreea Biro

There are several physical parameters that are taken into consideration when determining the level of agreeability of an enclosed space. For instance, when choosing the louvers for a room there are a multitude of criteria that might be considered such as colour, material or the degree of opacity. However, these apparently small fixtures may have a significant impact also on other apparently unimportant factors like the sound pressure level and the reverberation time. This paper aims to present different types of devices used to control the way daylight enters a room, from both the illuminance level and the acoustical point of view. During the experimental campaign, five of the most common types of louvers were examined regarding their main role of blocking the light and moreover their influence on the reverberation time and sound pressure level in the analysed chamber.


Author(s):  
Yoshiharu Soeta ◽  
Ayaka Ariki

Birdsong is used to communicate the position of stairwells to visually impaired people in train stations in Japan. However, more than 40% of visually impaired people reported that such sounds were difficult to identify. Train companies seek to present the sounds at a sound pressure level that is loud enough to be detected, but not so loud as to be annoying. Therefore, salient birdsongs with relatively low sound pressure levels are required. In the current study, we examined the salience of different types of birdsong and insect song, and determined the dominant physical parameters related to salience. We considered insect songs because both birdsongs and insect songs have been found to have positive effects on soundscapes. We evaluated subjective saliences of birdsongs and insect songs using paired comparison methods, and examined the relationships between subjective salience and physical parameters. In total, 62 participants evaluated 18 types of bird songs and 16 types of insect sounds. The results indicated that the following features significantly influenced subjective salience: the maximum peak amplitude of the autocorrelation function, which signifies pitch strength; the interaural cross-correlation coefficient, which signifies apparent source width; the amplitude fluctuation component; and spectral content, such as flux and skewness.


2012 ◽  
Vol 562-564 ◽  
pp. 1163-1167
Author(s):  
Feng Qiang Zhao ◽  
Guang Qiang Li ◽  
Hong Ying Hu ◽  
Jia Lu Du ◽  
Chen Guo

At present, the common method of testing noise generated by vehicle transmission before delivery is to measure the noise sound pressure level by means of sound level meter. Since the measurement result is susceptible to background noise, the method can only be operated in anechoic chamber. In this paper, in order to measure sound pressure level directly on production-line, a new vibration measurement method and its relevant formula are presented. The proposed method can effectively avoid being affected by background noise and obtain the sound pressure level of transmission noise on production-line by testing the vibration acceleration signals of transmission box. It’s proved that the new method makes the delivery test of transmission noise more convenient and effective. Moreover, it can improve the delivery quality of transmission as well as the performance of whole vehicle.


Sign in / Sign up

Export Citation Format

Share Document