bird songs
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 27 (6) ◽  
pp. 42-48
Author(s):  
Arturs Aboltins ◽  
Dmitrijs Pikulins ◽  
Juris Grizans ◽  
Sergejs Tjukovs

This paper addresses the development of an acoustic deterrent device for the protection of fishponds and other objects against the unwanted presence of birds. The objective of the paper is not only providing of a deep analysis of available technologies for waveform synthesis and generation, but also building a theoretical base for the design and implementation of acoustic bird deterrent solutions. The paper addresses the synthesis of bird songs and calls using technologies for music, speech, and other types of acoustic signal processing. The second part of the paper is devoted to the unique algorithms and implementation details of the intelligent acoustic deterrence device prototype. The practical applicability of algorithms for bird call record conversion into synthesizer sequences has been analysed and possible issues are highlighted. The effectiveness and ease of practical implementation of the given method in the hardware are briefly discussed.


Author(s):  
Heather Williams ◽  
Robert F. Lachlan

In studies of cumulative cultural evolution in non-human animals, the focus is most often on incremental changes that increase the efficacy of an existing form of socially learned behaviour, such as the refinement of migratory pathways. In this paper, we compare the songs of different species to describe patterns of evolution in the acoustic structure of bird songs, and explore the question of what building blocks might underlie cumulative cultural evolution of bird song using a comparative approach. We suggest that three steps occurred: first, imitation of independent sounds, or notes, via social learning; second, the formation of categories of note types; and third, assembling note types into sequences with defined structures. Simple sequences can then be repeated to form simple songs or concatenated with other sequences to form segmented songs, increasing complexity. Variant forms of both the notes and the sequencing rules may then arise due to copy errors and innovation. Some variants may become established in the population because of learning biases or selection, increasing signal efficiency, or because of cultural drift. Cumulative cultural evolution of bird songs thus arises from cognitive processes such as vocal imitation, categorization during memorization and learning biases applied to basic acoustic building blocks. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


2021 ◽  
Vol 376 (1836) ◽  
pp. 20200241
Author(s):  
Jozsef Arato ◽  
W. Tecumseh Fitch

Some animal vocalizations develop reliably in the absence of relevant experience, but an intriguing subset of animal vocalizations is learned: they require acoustic models during ontogeny in order to develop, and the learner's vocal output reflects those models. To what extent do such learned vocalizations reflect phylogeny? We compared the degree to which phylogenetic signal is present in vocal signals from a wide taxonomic range of birds, including both vocal learners (songbirds) and vocal non-learners. We used publically available molecular phylogenies and developed methods to analyse spectral and temporal features in a carefully curated collection of high-quality recordings of bird songs and bird calls, to yield acoustic distance measures. Our methods were initially developed using pairs of closely related North American and European bird species, and then applied to a non-overlapping random stratified sample of European birds. We found strong similarity in acoustic and genetic distances, which manifested itself as a significant phylogenetic signal, in both samples. In songbirds, both learned song and (mostly) unlearned calls allowed reconstruction of phylogenetic trees nearly isomorphic to the phylogenetic trees derived from genetic analysis. We conclude that phylogeny and inheritance constrain vocal structure to a surprising degree, even in learned birdsong. This article is part of the theme issue ‘Vocal learning in animals and humans’.


2021 ◽  
Author(s):  
Nasim Winchester Vahidi

The mechanisms underlying how single auditory neurons and neuron populations encode natural and acoustically complex vocal signals, such as human speech or bird songs, are not well understood. Classical models focus on individual neurons, whose spike rates vary systematically as a function of change in a small number of simple acoustic dimensions. However, neurons in the caudal medial nidopallium (NCM), an auditory forebrain region in songbirds that is analogous to the secondary auditory cortex in mammals, have composite receptive fields (CRFs) that comprise multiple acoustic features tied to both increases and decreases in firing rates. Here, we investigated the anatomical organization and temporal activation patterns of auditory CRFs in European starlings exposed to natural vocal communication signals (songs). We recorded extracellular electrophysiological responses to various bird songs at auditory NCM sites, including both single and multiple neurons, and we then applied a quadratic model to extract large sets of CRF features that were tied to excitatory and suppressive responses at each measurement site. We found that the superset of CRF features yielded spatially and temporally distributed, generalizable representations of a conspecific song. Individual sites responded to acoustically diverse features, as there was no discernable organization of features across anatomically ordered sites. The CRF features at each site yielded broad, temporally distributed responses that spanned the entire duration of many starling songs, which can last for 50 s or more. Based on these results, we estimated that a nearly complete representation of any conspecific song, regardless of length, can be obtained by evaluating populations as small as 100 neurons. We conclude that natural acoustic communication signals drive a distributed yet highly redundant representation across the songbird auditory forebrain, in which adjacent neurons contribute to the encoding of multiple diverse and time-varying spectro-temporal features.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hans T. Bilger ◽  
Emily Vertosick ◽  
Andrew Vickers ◽  
Konrad Kaczmarek ◽  
Richard O. Prum

Bird songs often display musical acoustic features such as tonal pitch selection, rhythmicity, and melodic contouring. We investigated higher-order musical temporal structure in bird song using an experimental method called “music scrambling” with human subjects. Recorded songs from a phylogenetically diverse group of 20 avian taxa were split into constituent elements (“notes” or “syllables”) and recombined in original and random order. Human subjects were asked to evaluate which version sounded more “musical” on a per-species basis. Species identity and stimulus treatment were concealed from subjects, and stimulus presentation order was randomized within and between taxa. Two recordings of human music were included as a control for attentiveness. Participants varied in their assessments of individual species musicality, but overall they were significantly more likely to rate bird songs with original temporal sequence as more musical than those with randomized temporal sequence. We discuss alternative hypotheses for the origins of avian musicality, including honest signaling, perceptual bias, and arbitrary aesthetic coevolution.


2021 ◽  
Vol 12 ◽  
Author(s):  
Prune Mazer ◽  
Inês Macedo ◽  
Tiago O. Paiva ◽  
Fernando Ferreira-Santos ◽  
Rita Pasion ◽  
...  

Auditory event-related potentials (ERP) may serve as diagnostic tools for schizophrenia and inform on the susceptibility for this condition. Particularly, the examination of N1 and P2 components of the auditory ERP may shed light on the impairments of information processing streams in schizophrenia. However, the habituation properties (i.e., decreasing amplitude with the repeated presentation of an auditory stimulus) of these components remain poorly studied compared to other auditory ERPs. Therefore, the current study used a roving paradigm to assess the modulation and habituation of N1 and P2 to simple (pure tones) and complex sounds (human voices and bird songs) in 26 first-episode patients with schizophrenia and 27 healthy participants. To explore the habituation properties of these ERPs, we measured the decrease in amplitude over a train of seven repetitions of the same stimulus (either bird songs or human voices). We observed that, for human voices, N1 and P2 amplitudes decreased linearly from stimulus 1–7, in both groups. Regarding bird songs, only the P2 component showed a decreased amplitude with stimulus presentation, exclusively in the control group. This suggests that patients did not show a fading of neural responses to repeated bird songs, reflecting abnormal habituation to this stimulus. This could reflect the inability to inhibit irrelevant or redundant information at later stages of auditory processing. In turn schizophrenia patients appear to have a preserved auditory processing of human voices.


Author(s):  
Xie Shan-shan ◽  
Xu Hai-feng ◽  
Liu Jiang ◽  
Zhang Yan ◽  
Lv Dan-jv
Keyword(s):  

Author(s):  
Jane Manning

This chapter describes Tasmanian composer Dan Kay’s Four Bird Songs from Shaw Neilson (2005). The texts for this pleasing, fluent cycle are by the farmworker-poet Shaw Neilson, and reflect his close affinity with the natural world, especially the life of waterbirds. Kay’s palpable empathy with these unsophisticated but burningly sincere poems draws music of clarity and refinement. The frequent modal melodies and minor harmonies cannot help but call to mind Vaughan Williams and the English folk-song tradition, but Kay manages to inject an individual flavour by means of chromatic shifts and varied rhythms, especially in the last two, slightly longer, songs. A light young baritone with a safe high register would be ideal here. The piano writing is clear and uncluttered, with simple, repeated figurations, and there is no need to force the voice. Standard notation is used throughout.


Sign in / Sign up

Export Citation Format

Share Document