Preparation of an Environmental Friendly Slow Release Nitrogen Fertilizer

2014 ◽  
Vol 1015 ◽  
pp. 346-349 ◽  
Author(s):  
Jing Li ◽  
Yu Sen Hu ◽  
Lu Mei Pu ◽  
Guang Sheng Guo ◽  
Hong Yan Niu

An environmental friendly slow-release urea fertilizer with double films (SUFDF) was prepared by using dialdehyde starch urea resin (DASU) as inner coating and polylactic acid (PLA) as outer materials. The structural, chemical characteristics and morphology of the SUFDF were characterized by FTIR, element analysis and SEM. Its efficiency in slowing the nitrogen release was examined via soil leaching and pot experiments. The experimental results indicated that the introduction of hydrophobic PLA and DASU reduced the swell ability of the fertilizer, which made it can provide nitrogen persistently at the early farming. After the urea dissolved, the DASU in the fertilizer would continue to release nitrogen due to its good slow-release property. So this fertilizer would have potential applications in modern agriculture and horticulture.

2020 ◽  
Vol 9 (1) ◽  
pp. 139-152 ◽  
Author(s):  
Xiao Zhang ◽  
Yanlu Liu ◽  
Panfang Lu ◽  
Min Zhang

AbstractA novel hydrogel slow-release nitrogen fertilizer based on sawdust with water absorbency was prepared using grafting copolymerization. Urea was incorporated as nitrogen source in a hydrogel fertilizer. Potassium persulfate (KPS) and N,N᾽-methylenebis acrylamide (MBA) were used as the initiator and cross-linker, respectively. The structure and properties of the samples were characterized by XPS, EDS, SEM, XRD and FTIR. The effects of various salt solutions, ionic strength and pH on swelling behavior were discussed. The results showed that the largest water absorbency of the sample reached 210 g/g in distilled water. In addition, the sample had the good nitrogen release property. Thus, the novel environmentally friendly hydrogel fertilizer may be widely applied to agricultural and horticultural fields.


2013 ◽  
Vol 38 (8) ◽  
pp. 1494-1503 ◽  
Author(s):  
Xiao-Cui ZHANG ◽  
Qi-Gen DAI ◽  
Xing-Xing HU ◽  
De-Jian ZHU ◽  
Xiu-Wen DING ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leila Javazmi ◽  
Anthony Young ◽  
Gavin J. Ash ◽  
Tobias Low

AbstractFertilisers are essential in modern agriculture to enhance plant growth, crop production and product quality. Recent research has focused on the development of delivery systems designed to prolong fertiliser release. This study introduces a new technology to encapsulate and release molecules of fertilisers by using multi-layered electrospun nanofibre as a carrier. Single-layer poly L-lactic acid (PLLA) nanofibres loaded with urea were fabricated using electrospinning. Triple-layer nanofibrous structures were produced by electrospinning polyhydroxybutyrate (PHB) nanofibres as external layers with PLLA nanofibres impregnated with urea fertiliser as the middle layer. Scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR) were employed to characterize the morphology of electrospun nanofibres. Urea release dynamic was analysed using a total nitrogen instrument (TNM-1). The results indicated that triple-layered urea-impregnated nanofibrous structures led to lower initial rate of nitrogen release and slower release rate of cumulative nitrogen which extended for more than three months. It is concluded that triple-layer nanofibrous structures have the potential for slow release delivery of fertilisers.


2008 ◽  
Vol 88 (5) ◽  
pp. 839-846 ◽  
Author(s):  
Wen-Yan Han ◽  
Li-Feng Ma ◽  
Yuan-Zhi Shi ◽  
Jian-Yun Ruan ◽  
Sarah J Kemmitt

Author(s):  
YC Danarto ◽  
Anggita Nugrahey ◽  
Sela Murni Noviani

<p>During this time, the use of urea is not efficient, because about 40-70% of nitrogen in the fertilizer is not absorbed by plants. In order to increase the effectivity of nitrogen release in urea fertilizer, it needs to be coated with modified chitosan as slow releasing agent to form a hydrogel material by forming a cross linking with glutaraldehyde cross-linker.The aims of this research is to study the mechanism and the appropriate kinetic model of nitrogen release in slow releasing fertilizer of modified chitosan. This research was conducted by analyzing the ability of bio-hydrogel by calculating the percentage of swelling ratio and water retention of hydrogel and the nitrogen release in slow releasing fertilizer both in the soil and water. The experiments were conducted by varying the amount of urea used which  30 gram, 40 gram, 50 gram, 60 gram and 70 gram of urea fertilizer. The The release profile is then plotted on several models of diffusion kinetic such as zero order, first order, higuchi and korsmeyer peppas. The appropriate model of diffusion kinetic is chosen by the largest correction factor (R2).The results showed that nitrogen release of the slow releasing fertilizer in the soil with 50% urea content  and  the  water  followed  korsmeyer  peppas  model  with  fickian  mechanism. Nitrogen release in the soil with urea content of 30%, 40%, 60%, and 70% followed the korsmeyer peppas model with nonfickian mechanism.</p>


2019 ◽  
Vol 179 ◽  
pp. 56-63 ◽  
Author(s):  
A. de B. Carvalho ◽  
A.L. da Silva ◽  
A.M. de A. Silva ◽  
A.J. Netto ◽  
T.T.B. de Medeiros ◽  
...  

2019 ◽  
Vol 64 (No. 7) ◽  
pp. 294-301
Author(s):  
S Gonzalez-Munoz ◽  
J Sanchez ◽  
S Lopez-Aguirre ◽  
J Vicente ◽  
J Pinos-Rodriguez

One in vitro assay and one in vivo trial with ruminally cannulated Holstein steers were conducted to evaluate the effects of a dietary substitution of soybean meal by a urea and slow-release urea source of fermentation and degradation of diets for cattle. The experimental diets consisted of the total mixed rations defined as the control with soybean meal (SBM), U (urea), SRU (slow-release urea), and SRU+U+AA (0.42% + 0.42% + 1% amino acids methionine and lysine). The dietary substitution of SBM by U or SRU reduced (P &lt; 0.05) the total gas production (V), microbial mass and degradation at 72 h incubation under the in vitro conditions, as well as the degradation rate (c) and the total volatile fatty acids (VFA) in the rumen of the steers; however, when the dietary substitution of SBM was by U+SRU+AA, those values did not decrease. In the steers, the dietary substitution of SBM by U and SRU reduced the ruminal degradation rate and the total VFA, and increased the ammonia N, but when SBM was substituted by U+SRU+AA in the diets, these changes were not observed. No advantage of SRU over U was found. The dietary substitution of SBM by U, SRU, U+SRU+AA did not modify the molar proportion of the VFA in the rumen nor were there changes in the nutrient digestion or excretion. Both the in vitro assay and the in vivo trial indicated that replacing SBM with U or SRU increases the ruminal ammonia N concentrations and reduces the degradation rate in the rumen, although those undesirable findings were not found when the SBM was replaced by U+SRU+AA. Therefore, it is feasible to replace the SBM with a combination of urea, slow-release urea, lysine and methionine in the diet for the ruminants.


Sign in / Sign up

Export Citation Format

Share Document