wafer polishing
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 141 ◽  
pp. 106418
Author(s):  
Zhengzheng Bu ◽  
Fengli Niu ◽  
Jiapeng Chen ◽  
Zhenlin Jiang ◽  
Wenjun Wang ◽  
...  

2020 ◽  
Vol 1004 ◽  
pp. 199-205
Author(s):  
Treliant Fang ◽  
Ping Chung Chen ◽  
Ming Hsun Lee

Single crystal SiC wafers are known to be extremely difficult to polish by conventional CMP slurries because of their high hardness and chemical resistance. Previously only those manganese-containing CMP slurries are capable of producing measurable and useful polishing rates with this versatile wide band-gap substrate. A new permanganate-free SiC polishing slurry containing a generic formula of MXO2 etchant, where M is an alkali metal, X is a halogen, O is oxygen is disclosed. When mixed with an abrasive powder in an aqueous slurry form, the tribochemical reactant that activates under pressure, etches SiC effectively, rendering an enhanced Material Removal Rate (MRR) when processing CMP SiC wafers. The MRR can sometimes go up to a few order of magnitudes, as compared to the abrasive slurry without these chemical etchants. The series of MXO2 compounds that can activate SiC polishing belong to the chemical family of halites. Sodium chlorite, NaClO2, the simplest and most available member of the halites family, is a good example. The accelerated polishing rates offer increased throughput of the slow SiC CMP process. The new slurry is particularly useful for non-oxide wafer polishing, which includes SiC, GaN and AlN wafers. An outstanding character of the new halite-based polishing formulation that is different from the current permanganate-based slurries is that the waste stream produced from the CMP process can be easily treated in the waste water treatment facilities because they do not contain toxic heavy metal ions such as manganese and permanganate in the polishing formulations. Continuous exhaustive CMP polishing test with 32 4” 4H-N SiC wafers using a production CMP tool containing 32L of the alumina-chlorite slurry has demonstrated an MRR of 1.7um/hr (Si-face) when the slurry is fresh, and a final MRR of 1.0um/hr after 16 hours polishing at 800mL/min slurry flow rate with pH buffer control without fresh oxidant addition. The resulting 32 polished 4H-SiC test wafers show overall excellent smooth surface roughness with the best Ra of 0.05nm by AFM after fine CMP polishing.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 258 ◽  
Author(s):  
Jeffrey McAllister ◽  
Calliandra Stuffle ◽  
Yasa Sampurno ◽  
Dale Hetherington ◽  
Jon Sierra Suarez ◽  
...  

Based on a previous work where we investigated the effect of conditioner type and downforce on the evolution of pad surface micro-texture during break-in, we have chosen certain break-in conditions to carry out subsequent blanket SiO2 wafer polishing studies. Two different conditioner discs were used in conjunction with up to two different conditioning downforces. For each disc-downforce combination, mini-marathons were run using SiO2 wafers. Prior to polishing, each pad was broken-in for 30 min with one of the conditioner-downforce combinations. The goal of this study was to polish wafers after this break-in to see how the polishing process behaved immediately after break-in. One of the discs used in this study produced similar micro-texture results at both downforces, which echoed the results seen in the mini-marathon. When comparing the different polishing results obtained from breaking-in the pad with the different discs used in this study, the coefficient of friction (COF) and SiO2 removal rate (RR) were uncorrelated in all cases. However, the use of different discs resulted in different COF and RR trends. The uncorrelated COF and RR, as well as the differing trends, were explained by pad micro-texture results (i.e. the differing amount of fractured, poorly supported pad asperity summits).


2018 ◽  
Vol 97 (1-4) ◽  
pp. 563-571 ◽  
Author(s):  
Cheolmin Shin ◽  
Atul Kulkarni ◽  
Kangjun Kim ◽  
Hojoong Kim ◽  
Sanghuck Jeon ◽  
...  

2015 ◽  
Vol 9 (4) ◽  
pp. 403-409
Author(s):  
Hsin-Min Lee ◽  
A-Cheng Wang ◽  
Yan-Cherng Lin

Sign in / Sign up

Export Citation Format

Share Document