Effects of Graphene Nanopletelets on Poly(Lactic Acid)/Poly(Ethylene Glycol) Polymer Nanocomposites

2014 ◽  
Vol 1024 ◽  
pp. 136-139 ◽  
Author(s):  
Buong Woei Chieng ◽  
Ibrahim Nor Azowa ◽  
Wan Yunus Wan Md Zin ◽  
Mohd Zobir Hussein

Graphene nanoplatelets (xGnP) were investigated as a novel nanoreinforcement filler in poly (lactic acid)(PLA)/poly (ethylene glycol)(PEG) blends by melt blending method. The prepared nanocomposites exhibited a significant improvement in tensile properties at a low xGnP loading. The tensile properties demonstrated the addition of 0.3wt% of xGnP led to an increase of up to 32.7%, 69.5% and 21.9% in tensile strength, tensile modulus and elongation at break of the nanocomposites respectively, compared to PLA/PEG blend. The nanocomposites also shows enhanced thermal stability compared with PLA/PEG blend in thermogravimetry analysis (TGA). Scanning electron microscopy (SEM) image of PLA/PEG/0.3wt% xGnP displays good uniformity and more homogenous morphology.

2021 ◽  
Vol 17 (2) ◽  
pp. 154-165
Author(s):  
Syazeven Effatin Azma Mohd Asri ◽  
Zainoha Zakaria ◽  
Azman Hassan ◽  
Mohamad Haafiz Mohamad Kassim ◽  
Reza Arjmandi

The incorporation of fermented chitin nanowhiskers (FCHW) into poly(lactic acid) (PLA) increased the tensile modulus and strength of PLA at the expense of ductility. The brittleness of PLA can be overcome with the use of plasticizer such as polyethylene glycols (PEG). The objective of this study is to investigate the effect of FCHW on the tensile and thermal properties PLA incorporated with PEG as plasticizer (PLA/PEG). PLA/PEG and FCHW reinforced PLA/PEG nanocomposites were prepared using solution mixing technique. Thermogravimetric analysis (TGA) was used to determine the thermal properties while tensile properties were determined from the tensile test. The incorporation of PEG successfully increased the ductility and tensile strength of PLA at the expense of modulus. Based on the tensile properties, 5 phr PEG was chosen for further investigation on the effect of FCHW on PEG modified PLA. Incorporation of 1 phr FCHW PLA/PEG increased the tensile strength and Young’s modulus. However, the tensile strength decreased with further addition of FCHW. The elongation at break of PLA/PEG decreased drastically with the incorporation of 1 phr FCHW and decreased gradually with further increase of FCHW. The thermal stability from TGA of FCHW reinforced PLA/PEG nanocomposites at 5 phr FCHW content was observed to be significantly higher compared to PLA/PEG, as indicated by T20 and Tmax.


2015 ◽  
Vol 133 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
Weraporn Pivsa-Art ◽  
Kazunori Fujii ◽  
Keiichiro Nomura ◽  
Yuji Aso ◽  
Hitomi Ohara ◽  
...  

2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


Author(s):  
Mihir Sheth ◽  
R. Ananda Kumar ◽  
Vipul Dav� ◽  
Richard A. Gross ◽  
Stephen P. McCarthy

Sign in / Sign up

Export Citation Format

Share Document