Dielectric Properties of BaTiO3/Epoxy and MWCNT/Epoxy Composites

2014 ◽  
Vol 1024 ◽  
pp. 393-396
Author(s):  
Chen Ling Poh ◽  
Mariatti Jaafar Mustapha ◽  
Ahmad Fauzi Mohd Noor ◽  
Abdul Rahman Mohamed ◽  
Tin Poay Chuah ◽  
...  

Polymer ceramic composite materials are candidate material for capacitor application. In this research, MWCNT and BaTiO3 were used as fillers in epoxy thin film composites where the filler loading was in the range of 0 to 2.0 vol%. The thin film composites were fabricated by using spin coating method. The dielectric constant and dielectric loss were measured at 100 Hz to 1 MHz. The dielectric constant of CNT was in the range of 3.5 to 243.7 whereas the dielectric constant of BaTiO3 was 3.5 to 33.7 at 1 kHz. Meanwhile the dielectric loss of MWCNT was 0.009 to 6.83 while dielectric loss of BaTiO3 was 0.009 to 0.016 at 1 kHz. In general, it was found that MWCNT filler provide high dielectric constant value compare to BaTiO3 this is because MWCNT is more conductive than BaTiO3. However MWCNT/epoxy composites exhibit higher dielectric loss compare to BaTiO3/epoxy composites.

2015 ◽  
Vol 1107 ◽  
pp. 119-124
Author(s):  
D.S. Saidina ◽  
M. Mariatti ◽  
J. Juliewatty

Polymer-ceramic composites have been pursued as the most promising dielectric materials for embedded capacitors in the organic package. In this study, ceramic fillers such as Calcium Copper Titanate (CCTO) was used to produce epoxy thin film composites for the purpose to replace capacitor made of ceramic materials. Spin coating technique was used to produce epoxy thin film composites. The effect of fillers loading on tensile and dielectric properties of the epoxy thin film composites were determined. Results showed that epoxy thin film with 20 vol% filler loading showed good dielectric properties. However, an increase of the fillers content caused reduction in the tensile properties due to filler agglomeration and voids. Dielectric constants and dielectric losses of epoxy/inorganic composite films generally increase with addition of filler.


2018 ◽  
Vol 6 (9) ◽  
pp. 2370-2378 ◽  
Author(s):  
Yang Liu ◽  
Cheng Zhang ◽  
Benyuan Huang ◽  
Xu Wang ◽  
Yulong Li ◽  
...  

A novel skin–core structured fluorinated MWCNT nanofiller was prepared to fabricate epoxy composite with broadband high dielectric constant and low dielectric loss.


Author(s):  
Rajathsing Kalusulingam ◽  
Sampath Gajula ◽  
Paulmanickam Koilraj ◽  
Duraikkannu Shanthana Lakshmi ◽  
Rajesh J. Tayade ◽  
...  

2014 ◽  
Vol 104 (2) ◽  
pp. 022904 ◽  
Author(s):  
A. Kulkarni ◽  
K. Meurisch ◽  
I. Teliban ◽  
R. Jahns ◽  
T. Strunskus ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (38) ◽  
pp. 23309-23312 ◽  
Author(s):  
Ting Yang ◽  
Wenhui Xu ◽  
Xinwen Peng ◽  
Haoqing Hou

Crown ether-containing polyimides possess high dielectric constant and low dielectric loss, without sacrificing other properties.


2016 ◽  
Vol 133 (42) ◽  
Author(s):  
Parisa Hajighahremanzadeh ◽  
Mahsa Abbaszadeh ◽  
Seyyed Abbas Mousavi ◽  
Mohammad Soltanieh ◽  
Hadi Bakhshi

2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Kyle M. Grove ◽  
Austin Fox ◽  
David P. Cann ◽  
Song Won Ko ◽  
Peter Mardilovich ◽  
...  

Abstract Phase pure perovskite (1-x)Bi1/2Na1/2TiO3 – xBi1/2K1/2TiO3 (BNKT) thin films were successfully prepared via an inverse mixing order chemical solution deposition method and the impact of process conditions on film properties were observed. Process conditions evaluated included crystallization temperature and time, ramp rate, pyrolysis temperature, and cation excess. Properties measured included crystal structure, dielectric constant, dielectric loss, piezoelectric response, and ferroelectric response. A few notable trends were observed. A subtle impact on piezoelectric response was observed in films prepared using different ramp rates: 100 C per second films (d33,f = 60 ± 5 pm/V at 1 kHz), 75 °C per second films (d33,f = 55 ± 5 pm/V) and 150 C per second films (d33,f = 50 ± 5 pm/V). Films prepared using a 75 °C per second ramp rate displayed slightly higher dielectric loss (tan δ = 0.09 at 1 kHz) than films prepared using a 100 °C per second ramp rate (tan δ = 0.07 at 1 kHz) or 150 °C per second ramp rate (tan δ = 0.05 at 1 kHz). Pyrolysis temperatures greater than 350 °C are necessary to burn off organics and maximize film dielectric constant. Dielectric constant increased from 450 ± 50 at 1 kHz to 600 ± 50 at 1 kHz by increasing pyrolysis temperature from 300 to 400 °C. Excess cation amounts (for compositional control) were also evaluated and it was found films with higher amounts of Na and K excess compared to bismuth excess displayed an increase in d33,f of about 10 pm/V compared to films prepared with equivalent Bi and Na and K excess amounts. Article highlights Impact of processing conditions on inverse mixing order chemical solution deposited bismuth based thin films. Dielectric, piezoelectric, and ferroelectric properties of thin film bismuth sodium titanate-bismuth potassium titanate thin films. Developing lead-free piezoelectric actuator materials.


Sign in / Sign up

Export Citation Format

Share Document