Control Research on Asphalt Pavement Roughness in Anchorage Zone

2014 ◽  
Vol 1030-1032 ◽  
pp. 754-757
Author(s):  
Zheng Wang ◽  
Wei Zhang ◽  
Jia Jia Cheng ◽  
Meng Chen ◽  
Wen Jing Liu

The effect of pavement roughness on the roadbed and retaining structure underground was studied. Three different groups of International Roughness Index (IRI) were analyzed based on 6221 data collection instrument in this paper. Results show that different pavement roughness has different effect on retaining structure. Additionally, the vibration RMS increases with IRI when it is in the range of normal driving for the car, but amplitude of the IRI is larger. Finally, the main factors which influence the stability of structure and some corresponding improving measures are presented.

2012 ◽  
Vol 178-181 ◽  
pp. 1306-1313 ◽  
Author(s):  
Bo Peng ◽  
Lu Hu ◽  
Yang Sheng Jiang ◽  
Liang Yun

For asphalt pavement performance evaluation, pavement roughness, which is subject to cracks, potholes, road repairs and so on, is a major factor to influence riding quality. Therefore, riding quality is partly correlated with pavement distress, and the relationship can be transformed to that between pavement roughness and distress rate. However, this relationship is not clear, and not reflected in existing evaluation models. Thus, correlation analysis and non-parametric test of independent samples were applied in this paper to find that, international roughness index and pavement distress rate are significantly different due to different grades of roads, then, linear and nonlinear regression were used to analyze the relationships between international roughness index and pavement distress rate for different road grades. Furthermore, original data were processed by logarithmic transformation, radical transformation, exponential transformation and so on, based on which, corresponding relationships were analyzed by linear and nonlinear regression. Finally, best models to describe relationships between international roughness index and pavement distress rate for different road grades were solved out, and corresponding 90% confidence intervals were computed. Research in this paper offers a reference for improving asphalt pavement performance evaluation system and models, which is conducive to further theoretical research and practice.


Author(s):  
Kevin K. McGhee

In the summer of 1996 the Virginia Department of Transportation (VDOT) initiated the pilot of a new special provision regarding the smoothness of asphalt pavement surfaces. This special provision is based on the international roughness index (IRI) and is administered with a laser-equipped South Dakota–style inertial road profiler. A critical assessment of the nontraditional equipment and methods used to administer the special provision is provided. Issues addressed in the critique include provision exemptions, the ability to identify and contend with construction variability, and peculiarities of the equipment that affect the ability of VDOT to administer a modern acceptance provision.


TRANSPORTES ◽  
2020 ◽  
Vol 28 (1) ◽  
pp. 147-159
Author(s):  
Jorge Braulio Cossío Durán ◽  
José Leomar Fernandes Júnior

Pavimentos irregulares são geralmente responsáveis por acelerações verticais (VA) que afetam as aeronaves, aumentam a distância de parada e dificultam a leitura dos instrumentos de navegação na cabine dos pilotos. O International Roughness Index (IRI) e o Boeing Bump Index (BBI) são utilizados atualmente para quantificar a irregularidade longitudinal dos pavimentos aeroportuários e identificar seções que demandam atividades de manutenção e reabilitação (M&R). Contudo, tais índices baseiam-se apenas nas respostas dinâmicas de um automóvel a 80 km/h às irregularidades longitudinais dos pavimentos rodoviários, bem como nas características físicas das irregularidades (comprimento e altura), respectivamente, ignorando o efeito das VA nas aeronaves. Ainda, limites críticos atuais, sugeridos por Sayers & Karamihas e ANAC para IRI (2,0 e 2,5 m/km, respectivamente) e pela FAA para BBI (1,0) podem subestimar a condição real do pavimento. Este artigo avalia o efeito da irregularidade longitudinal nas acelerações na cabine dos pilotos (VACP) e no centro de gravidade (VACG). O software ProFAA permitiu calcular os índices e simular as VA em 4 aeronaves representativas atravessando 20 pistas de pouso e decolagem em 10 velocidades de taxiamento variando de 37 a 370 km/h. Comparações estatísticas e análises de regressão foram realizadas. Principais resultados mostram que VACP é 50% maior do que VACG e que ultrapassa o limite critico de 0,40 g quando o IRI e BBI estão acima de 3,7 m/km e 0,20, respectivamente. Um estudo de caso é também apresentado para comparar esses limites e sugere que a tomada de decisão baseada em IRI e VA pode trazer diferenças significativas na quantidade de atividades de M&R.


2013 ◽  
Vol 742 ◽  
pp. 104-108
Author(s):  
Shao Wen Liu ◽  
Xiao Zhang

In this paper, pavement roughness is assumed as random stationary variable and used as the exciting force of theoretical analyses of the quarter car model of International Roughness Index (IRI). From the frequency response function of the quarter car, the response function of the displacement difference between sprung and unsprung mass is obtained based on random process theory. Then the relationship between IRI and power spectral density (PSD) is established from statement characteristic of the response function. Finally, the longitudinal road profiles of typical asphalt roads in China are used to validate the proposed model.


2014 ◽  
Vol 505-506 ◽  
pp. 180-183 ◽  
Author(s):  
Zong Tao Zhang ◽  
Quan Man Zhao ◽  
Wan Qiao Yang

The most widely used pavement roughness index is the international roughness index (IRI), but it is a poor predictor of ride comfort. In addition, the rider has not yet been included in the vehicle model used to evaluate pavement roughness. In this paper, in order to evaluate the comfort of the rider directly and consider the effects on ride comfort of pitch movement, a five-degree-freedom vibration model was built when a rider was added to a pitch-plane vehicle model. The vertical weighted root-mean-square (RMS) acceleration of the rider was suggested to be pavement roughness indices, which were related to ride comfort, respectively. The new roughness indices were calculated and a new pavement roughness evaluation method was developed.


2021 ◽  
Vol 13 (4) ◽  
pp. 2184
Author(s):  
Yu Tian ◽  
Shifu Liu ◽  
Le Liu ◽  
Peng Xiang

Pavement roughness is a critical airport pavement characteristic that has been linked to impacts such as safety and service life. A properly defined roughness evaluation method would reduce airport operational risk, prolong the life of aircraft landing gear, and optimize the decision-making process for pavement preservation, which together positively contribute to overall airport sustainability. In this study, we optimized the parameters of the International Roughness Index (IRI) model to resolve the current poor correlation between the IRI and aircraft vibration responses in order to adapt and extend the IRI’s use for airport runway roughness evaluation. We developed and validated a virtual prototype model based on ADAMS/Aircraft software for the Boeing 737–800 and then employed the model to predict the aircraft’s dynamic responses to runway pavement roughness. By developing a frequency response function for the standard 1/4 vehicle model, we obtained frequency response distribution curves for the IRI. Based on runway roughness data, we used fast Fourier transform to implement the frequency response distribution of the aircraft. We then utilized Particle Swarm Optimization to determine more appropriate IRI model parameters rather than modifying the model itself. Our case study results indicate that the correlation coefficient for the optimized IRI model and aircraft vibration response shows a qualitative leap from that of the original IRI model.


2018 ◽  
Vol 1 (3) ◽  
pp. 581-592
Author(s):  
Evi Zulfan ◽  
Sofyan M. Saleh ◽  
Yuhanis Yunus

Abstract : Road maintenance activities is one part of the road management and road organizer shall prioritize road maintenance to maintain the level of services in accordance with defined minimum service standards. Assessment of road conditions resulting from the survey activities. Km.77 (Batas Pidie) - Batas Kota Sigli is a national road with a length of 29.34 Km. Rating national road refers Free Road Condition Survey, No. SMD-03 / RC (relationship International Roughness Index, IRI-Surface Distress Index, SDI), which is only capable of supporting votes to traffic lanes. This research is assessed road conditions and a comparative analysis (IRI-SDI indicators and per-percentage area of damage) on the carriageway. The method used in the study, refers to the Minister of Public Works  No. 15 / PRT / M / 2007 and No. 13 / PRT / M / 2013, which is able to support the assessment of traffic lanes, shoulders, and complementary buildings (BPLK) with elements: median, ditches, culverts, retaining walls, island roads and sidewalks. The condition of the road is done through a detailed survey of road conditions with the visual method followed by processing and analyzing data, producing road conditions, type of treatment and allocation of the required budget requirements. The results show the value of the condition is above 60% steady-state condition and needs maintenance budget of Rp. 113,645,850,000.00 for all elements of the road. From the results of a comparative analysis of known value of a deviation of 4.77% for the stability of the road and -Rp.98.825.850.000,00 for road maintenance budget requirements.Abstrak: Kegiatan pemeliharaan jalan merupakan salah satu bagian dari penyelenggaraan jalan dan penyelenggara jalan wajib memperioritaskan pemeliharaan jalan untuk mempertahankan tingkat pelayanan sesuai dengan standar pelayanan minimal yang ditetapkan. Kegiatan penilaian kondisi jalan dihasilkan dari kegiatan survei jalan. Ruas jalan Km.77 (Batas Pidie) - Batas Kota Sigli merupakan ruas jalan nasional dengan panjang 29,34 Km. Penilaian ruas jalan nasional mengacu pada Panduan Survei Kondisi Jalan, No. SMD-03/RC (hubungan International Roughness Index, IRI - Surface Distress Index, SDI), yang hanya mampu mendukung penilaian untuk jalur lalu lintas. Penilitian ini dilakukan untuk menilai kondisi jalan dan analisis perbandingan (Indikator IRI - SDI dan persentase luasan kerusakan) pada jalur lalu lintas. Metode yang digunakan dalam penelitian, mengacu pada Peraturan Menteri Pekerjaan Umum (Permen PU) Nomor : 15/PRT/M/2007 dan Nomor : 13/PRT/M/2013, yang mampu mendukung penilaian jalur lalu lintas, bahu jalan, dan bangunan pelengkap (BPLK) dengan elemen : median, saluran samping, gorong-gorong, tembok penahan tanah, pulau jalan dan trotoar. Penilaian kondisi jalan dilakukan melalui survei kondisi rinci jalan dengan metode visual dilanjutkan dengan pengolahan dan analisis data, yang menghasilkan kondisi jalan, jenis penanganan dan alokasi kebutuhan anggaran yang dibutuhkan. Dari hasil penelitian diketahui nilai kondisi berada diatas 60 % kondisi mantap dan kebutuhan anggaran pemeliharaan Rp. 113.645.850.000,00 untuk seluruh elemen jalan. Dari hasil analisis perbandingan diketahui nilai deviasi sebesar 4,77 % untuk kemantapan jalan dan -Rp. 98.825.850.000,00 untuk kebutuhan anggaran pemeliharaan jalan.


Author(s):  
Armstrong Aboah ◽  
Yaw Adu-Gyamfi

The commonly used index for measuring pavement roughness is the International Roughness index (IRI). Traditional method for collecting road surface information is expensive and as such researchers over the years have resorted to other cheaper ways of collecting data. This study focuses on developing a deep learning model to quickly and accurately determine the IRI values of road sections at a cheaper cost. The study proposed a model that uses accelerometer data and previous year’s IRI values to predict current year IRI values. The study concludes that addition of accelerometer readings to previous year’s IRIs increased the accuracy of prediction.


2020 ◽  
Vol 17 (1) ◽  
pp. 13-19
Author(s):  
M.O. Popoola ◽  
O.A. Apampa ◽  
O. Adekitan

H ighway safety is a major priority for public use and for transportation agencies. Pavement roughness indirectly influence drivers' concentration, vehicle operation, and road traffic accidents, and it directly affect ride quality. This study focuses on analyzing the influence of pavement roughness on traffic safety using traffic, pavement and accident data on dual and single carriageway operated under heterogeneous traffic conditions in South-west, Nigeria. Traffic crash data between 2012 and 2015 was obtained from the Federal Road Safety Commission (FRSC) and International Roughness Index (IRI) data from the Pavement Evaluation Unit of the Federal Ministry of Works, Kaduna. Crash road segments represented 63 percent of the total length of roads. IRI values for crash and non-crash segments was a close difference of 0.3,This indicates that roughness is not the only factors affecting occurrence of traffic crashes but a combination with other factors such as human error, geometric characteristics and vehicle conditions. Crash severity was categorized into Fatal, serious and minor injury crashes. In all cases, the total crash rate increases with increase in IRI value up to a critical IRI value of 4.4 and 6.15 for Sagamu-Ore road and Ilesha-Akure-Owo road respectively, wherein the crash rate dropped. The conclusion is key in improving safety concerns, if transportation agencies keep their road network below these critical pavement conditions, the crash rate would largely decrease. The study concluded that ride quality does not directly affect traffic crash rate. Keywords: Pavement conditions, traffic safety, International Roughness Index, crash rate, carriageway.


Sign in / Sign up

Export Citation Format

Share Document