Analysis and Optimization of Elastic Expansion Sleeve Based on the Finite Element

2014 ◽  
Vol 1049-1050 ◽  
pp. 859-862
Author(s):  
Hu Dai Fu ◽  
Jin Gang Gao ◽  
Wei Wei Li

The contact finite element method is proposed to analyze the stress and deformation distribution of elastic expansion sleeve in the paper. The maximum stress position of each component under the most dangerous working condition is obtained. The effect of structure dimension on stress and deformation of elastic expansion sleeve is found out. The structure dimension meeting the practical requirements is gotten. The analysis results provide the reliable theory basis for the design. The optimization for the structure and processing technology of elastic expansion sleeve is realized, based on simulating the design structure.

2020 ◽  
Vol 17 (6) ◽  
pp. 579-587
Author(s):  
Kunlapat THONGKAEW ◽  
Thanwit NAEMSAI

Over the years, plastic water bottle manufacturing, especially PET (Polyethylene terephthalate) bottle has been steadily increasing due to its toughness, transparency, and chemical properties. However, most manufacturers have to spare time, and cost, verifying their prototypes in accordance to the Thai Industrial Standard (TIS) before any mass production can start. This paper aims to overcome some of these problems by using Finite Element Method (FEM) to study bottle mechanical properties, particularly maximum stress and deformation that can be employed to evaluate performance and optimal thickness. From simulation results the optimal thickness of a 6-liter bottle, that its maximum stress can still be kept under critical value, is 0.45 mm. The thinner and lighter bottle reduces the amount of material usage. The FEM simulation also speeds up and alleviates some necessary testing procedures in a prototype designing process.


2011 ◽  
Vol 291-294 ◽  
pp. 2425-2428
Author(s):  
Zhong He Chen ◽  
Wei Qiang Wang ◽  
Ming Zhang ◽  
Ning Ning Dong

The C-type expansion bolt is a new kind and new structural bolt. It has superior compatibility to the soft rock and the big distorted tunnel. In order to study its stress, deformation and interaction mechanism, large distortion calculations and analyses have been carried out on the bolt by FEM (finite element method), especially with the ANSYS software, based on the updated Lagrangian law. The results show that the maximum stress and deformation of the section and body of the bolt meets the anchoring requirements. The bolt meets the required anchoring performance and anti-drawing performance. The paper provides some basis for its design, application and anchoring stress analysis.


2020 ◽  
Vol 70 (1) ◽  
pp. 41-46
Author(s):  
Yaoji Deng ◽  
Youqun Zhao ◽  
Mingmin Zhu ◽  
Zhen Xiao ◽  
Qiuwei Wang

To overcome the shortcomings of traditional rigid road wheel, such as poor damping effect and low load-bearing efficiency, a new type of flexible road wheel, having a unique suspension-bearing mode, was introduced. The three-dimensional nonlinear finite element model of rigid and flexible road wheel, considering the triple nonlinear characteristics of geometry, material and contact, is established for numerical investigation of static loading performance. The accuracy of the finite element model of the rigid and flexible road wheel is verified by static loading experiment. The static loading performance of the rigid and flexible road wheels is numerically analyzed. The influence of vertical load on maximum stress and deformation of the rigid and flexible wheels is also studied. The results show that the contact pressure uniformity of the flexible road wheel is better than that of the rigid road wheel under the static vertical load, but the maximum stress and deformation of the flexible road wheel are greater than that of the rigid road wheel. However, this problem can be solved by increasing the number of hinge sets and optimising the joints. The research results provide theoretical basis for replacing rigid road wheel with flexible road wheel, and also provide reference for structural optimisation of flexible road wheel.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Alamsyah Alam ◽  
A. B. Mapangandro ◽  
Amalia Ika W ◽  
M U Pawara

Ro - Ro Ferry is equipped with a connecting door between the port and the ship. The ramp door experiences load during loading and discharging of the rolling cargo. This repetitive load may cause fatigue failure. The structure of the ramp door should withstand this load. Therefore, The ramp door should be properly designed to ensure the structural integrity of the ramp door. The purpose of this research is to analyze the maximum stress and the Fatigue life of the bow ramp door. The method used is the finite element method. The given loads are several types of vehicles that are commonly transported by the ship. The given load case is the point load working at the girder plate and between the girder plate. Based on the simulation results with the given point load, the maximum stress is identified located between the girder for the large truck case with 397.02 MPa, while the minimum stress located at the girder for sedan car with 43.93 MPa. As for the fatigue life of the bow ramp door construction. it is 1.17 ~ 398.64 years, and the load cycle is 5.35 x 104 ~ 9.05 x 106 cycle. Keywords : Bow Ramp Door; Stress; Fatigue Life; Finite Element; Ferry


2016 ◽  
Vol 28 (3) ◽  
Author(s):  
Widia Hafsyah Sumarlina Ritonga ◽  
Janti Rusjanti ◽  
Nunung Rusminah ◽  
Aldilla Miranda ◽  
Tatacipta Dirgantara

Introduction: The surgical procedure of dental implant comprising one stage surgery for the non-submerged implant design and two stages for submerged. Submerged design is frequently used in Faculty of Dentistry Padjadjaran University as it is safer in achieving osseointegration. This study has been carried out to evaluate resistant capacity of an implant component design submerged against failure based on location and the value of internal stress during the application of mastication force using the 3D Finite Element Method (FEM). Methods: The present study used a CBCT radiograph of the mandibular patient and Micro CT Scan of one submerged implant. Radiograph image was then converted into a digital model of 3D computerized finite element, subsequently inputted the material properties and boundary condition with 87N occlusion load applied and about 29N for the shear force. Results: The maximum stress was found located at the contact area between the implant and alveolar crest with stress value registered up to 193.31MPa located within an implant body where is understandable that this value is far below allowable strength of titanium alloy of 860 MPa. Conclusion: The location of the maximum stress was located on the contact area between the implant-abutment and alveolar crest. This implant design is acceptable and no failure observed under mastication load.


2011 ◽  
Vol 383-390 ◽  
pp. 5669-5673
Author(s):  
Song Ling Wang ◽  
Zhe Sun ◽  
Zheng Ren Wu

For the large centrifugal fan impeller, its working condition generally is bad, and its geometry generally is complex. So its displacements and stresses distribution are also complex. In this paper, we can obtain the fan impeller’s displacements and stresses distribution accurately through numerical simulation in G4-73 type centrifugal fan impeller using the finite element method software ANSYS. The calculation result shows that the maximum total displacement of the impeller is m, it occurs on the position of the half of the blade near the outlet of the impeller; and the maximum equivalent stress of the impeller is 193 MPa, it occurs on the contacted position of the blade and the shroud near inlet of the impeller. Furthermore, check the impeller strength, the result shows that the strength of the impeller can meet the requirement.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 525 ◽  
Author(s):  
Nadežda Langová ◽  
Roman Réh ◽  
Rastislav Igaz ◽  
Ľuboš Krišťák ◽  
Miloš Hitka ◽  
...  

The research on population shows that the count of overweight people has been constantly growing. Therefore, designing and modifying utility items, e.g., furniture should be brought into focus. Indeed, furniture function and safety is associated with the weight of a user. Current processes and standards dealing with the design of seating furniture do not meet the requirements of overweight users. The research is aimed at designing flexible chairs consisting of lamellae using the finite element method (FEM). Three types of glued lamellae based on wood with different number of layers and thickness were made and subsequently, their mechanical properties were tested. Values for modulus of elasticity and modulus of rupture were used to determine stress and deformation applying the FEM method for modelling flexible chairs. In this research, the methodology for evaluating the ultimate state of flexible chairs used to analyse deformation and stability was defined. The analysis confirms that several designed constructions meet the requirements of actual standards (valid for the weight of a user up to 110 kg) but fail to meet the requirements for weight gain of a population.


2013 ◽  
Vol 712-715 ◽  
pp. 1027-1031
Author(s):  
Zhen Yu Liu ◽  
Ping Ping Zhang ◽  
Hu Zhen Wang ◽  
Xiang Rong Zhu

Aimed at deflection fracturing by oriented perforation, a two-dimensional, non-steady and two-phase Finite Element Method (FEM) is established. Taking a battery of wells in the inverted nine-spot rhombus pattern as object of study, it is reported that law of different crack initiation angle (CIA) affecting deflection fracturing. In the respect of daily oil production and cumulative oil production, the dual fracture with different CIA is more than straight fracture. So it is feasible to use deflection fracturing of oriented perforation to increase the production of the special low permeability oilfield. In contrast to dual fractures with different fracturing initiation angles, we can see that the wider CIA, the higher cumulative oil production. So we can draw such a conclusion that when deflection fracturing is implemented, angle should be increased if the working condition is permitted so as to increase the production of oil well.


Sign in / Sign up

Export Citation Format

Share Document