MSWI Bottom Ash as an Aggregate for a Lightweight Concrete

2014 ◽  
Vol 1054 ◽  
pp. 254-257 ◽  
Author(s):  
Kirill Polozhiy ◽  
Pavel Reiterman ◽  
Martin Keppert

This paper is focused on the problem of the lightweight concretes made of the Municipal Solid Waste Incineration (MSWI) bottom ash. Their basic, mechanical and thermal properties were investigated. According to the requirements were designed 7 mixtures and reference made just from natural aggregates. The first 4 mixtures had a higher porosity, which explained good thermal properties, but it had low mechanical parameters. Next 4 mixtures had lower level of porosity and had shown good ultimate stress data.

2017 ◽  
Vol 35 (9) ◽  
pp. 978-990 ◽  
Author(s):  
Sabrina Sorlini ◽  
Maria Cristina Collivignarelli ◽  
Alessandro Abbà

The aim of this work was to assess the leaching behaviour of the bottom ash derived from municipal solid waste incineration (MSWI) used in concrete production. In particular, the release of pollutants was evaluated by the application of different leaching tests, both on granular materials and monolithic samples (concrete mixtures cast with bottom ash). The results confirmed that, according to Italian regulations, unwashed bottom ashes present critical issues for the use as alternative aggregates in the construction sector due to the excessive release of pollutants; instead, the leachate from washed bottom ashes was similar to natural aggregates. The concentration of pollutants in the leachate from concrete mixtures was lower than regulation limits for reuse. The crushing process significantly influenced the release of pollutants: this behaviour was due both to the increase in surface area and the release of contaminants from cement. Moreover, the increase in contact time (up to 64 days) involved more heavy metals to be released.


2020 ◽  
Vol 1010 ◽  
pp. 653-658
Author(s):  
Roshazita Che Amat ◽  
Khairul Nizar Ismail ◽  
Khairel Rafezi Ahmad ◽  
Norlia Mohamad Ibrahim

Municipal solid waste incinerators (MSWI) produce by products which can be classified as bottom and fly ashes. The bottom ash accounts for 85-90 % of solid product resulting from MSW combustion. The objective of this study was to assess the feasibility of application of municipal solid waste incineration (MSWI) bottom ash as a supplementary cementations material for the preparation of blended cement. The used of bottom ash as a research material is caused by substances contained in cement is almost the same with bottom ash. Bottom ash was found to have some reactivity, but without greatly affecting the hydration process of OPC at 10 % replacement with 10% metakaolin is required to be used in the production of concrete in order to improve strength.


Resources ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 66 ◽  
Author(s):  
Iveta Vateva ◽  
David Laner

Municipal solid waste incineration (MSWI) is a major element of modern waste management and produces annually around 5.7 million tonnes of bottom ash (BA) in Germany. In order to save natural resources and protect the environment, utilisable materials need to be recovered from BA. It was the aim of the present study to determine metal and mineral resource potentials of MSWI BA based on a characterisation study of raw and aged BA of the MSWI plant in Kassel (Germany). The BA investigated consisted of 82.2% mineral materials, 16.3% metals, and 1.5% unburnt organic matter. Overall, 12.1% and 3.6% of the MSWI BA were theoretically recoverable as native ferrous (Fe) and non-ferrous (NFe) metals, respectively. Assuming state-of-the-art recovery technology, 10.7% and 2.0% of the BA were actually extractable as Fe and NFe metals. The processed BA, as a mixture, did not comply with current German limit values for use as a construction material mainly due to excessive soluble salt contents. Coarser grain size fractions were less contaminated, resulting in a utilisable potential of less than 30% of the BA as a construction material. Hence, grain-size specific processing routes need to be developed for MSWI BA to fully exploit its mineral resource potential.


Sign in / Sign up

Export Citation Format

Share Document