A Study Effect of Shooting 2 Balls in a Ball Swaging Process on Gram Load Parameter Using Finite Element Analysis

2014 ◽  
Vol 1061-1062 ◽  
pp. 421-426 ◽  
Author(s):  
Panupich Kheunkhieo ◽  
Kiatfa Tangchaichit

The purposes of this research are to explore the baseplate and actuator arm deformation which effect to the gram load which occur in the ball swaging process, the main component determining quality of assembly the head stack assembly with the actuator arm. By shooting a ball though the base plate, the component located on the head stack assembly, the base plate plastic deformation takes place and it in expand in radial direction. The base plate then adjoins with the actuator arm. Using the finite element method to reproduce the ball swaging process, we repeated to study effect of the swage press clamp and velocity. The study done by creating the three dimensionals finite element model to analyze and explain characteristics of the baseplate and actuator arm deformation which effect to gram load which effect to the ball swaging process.

1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2003 ◽  
Vol 125 (3) ◽  
pp. 527-532 ◽  
Author(s):  
J. W. Hobbs ◽  
R. L. Burguete ◽  
E. A. Patterson

By means of comparing results from finite element analysis and photoelasticity, the salient characteristics of a finite element model of a nut and bolt have been established. A number of two-dimensional and three-dimensional models were created with varying levels of complexity, and the results were compared with photoelastic results. It was found that both two-dimensional and three-dimensional models could produce accurate results provided the nut thread run-out and friction were modeled accurately. When using two-dimensional models, a number of models representing different positions around the helix of the thread were created to obtain more data for the stress distribution. This approach was found to work well and to be economical.


2013 ◽  
Vol 275-277 ◽  
pp. 2241-2247 ◽  
Author(s):  
Arbtip Dheeravongkit ◽  
Narongsak Tirasuntarakul

Ball swaging is a general method in head stack assembly process to permanently attach Head Gimbal Assemblies (HGA) on the actuator arm. In this process, the swage ball is guided by a pin through the inner base plate’s hole in order to deform the base plate to tightly attach to the actuator arm. However, the loosing problem can still be found quite often in the current swaging process. This research focuses on ball sizes and the number of balls used which currently no theoretical guidance in choosing the both parameters. Besides, the best combination of the both parameters can give the best swaging performance. The three-dimensional finite element model is created and analyzed to estimate the swaging performance according to the variation of both parameters by using the tightening torque and the fixing distance of base plate to determine the quality of the ball swaging process. The results from finite element method are treated as the sampling points which are used to create the interpolation in order to increase the considered cases to cover all happening cases from both parameters. After that, a searching algorithm is implemented to determine the most suitable ball size and the number of ball used for the process. By using the finite element analysis together with the interpolation and a searching algorithm, the optimal design parameters for a complex problem with multiple conditions of consideration can be easily found.


2010 ◽  
Vol 97-101 ◽  
pp. 1433-1437
Author(s):  
Xue Mei Liu ◽  
Zeng Da Zou ◽  
Xin Hong Wang ◽  
Shi Yao Qu

In friction surfacing process, the temperature field and strain field, especially of coating rod, is considered an important element in analyzing the process’ mechanism and choosing the key process parameters properly. In this paper, the finite element method was employed to simulate the coupling of 3-D temperature field and deformation field of coating rod during friction surfacing. The simulation results show that at the preliminary preheating period, the isotherm goes down at the center part, and the temperature field presents “M” along the radial direction. The temperature increasing rate at the friction interface is higher at first, and then become lower, once the friction system becomes quasi-steady, the temperature here will be stable approximately. The largest effective strain occurs near the center of bottom circle. The simulation results are close to the experimental results, thus builds a basis for analyzing the process’s mechanism, allows for theoretical guidance for analyzing feasibility and helps optimize key parameters.


2012 ◽  
Vol 569 ◽  
pp. 415-419
Author(s):  
Xi Jian Zheng ◽  
Yong Shang Han ◽  
Zheng Yi Xie

Based on the Finite Element Method, the suspended platform of temporarily installed suspended access equipment was simplified and the special connection positions were dealt with rigidization and coupling, thus the finite element model of suspended platform was established. Analyzing major structures of finite element model in different section dimensions, the reasonable scheme could be ascertained and the section dimensions of major structures in different materials could be obtained. Combining with the test results, the rationality of finite element analysis could be proved. The study could provide reference for the similar products on design and development.


2013 ◽  
Vol 397-400 ◽  
pp. 573-576
Author(s):  
Xin Zheng Pu

In order to improve the structure mechanics performance of assembly body of conical pick, the finite element method was taken to analyse assembly body of conical pick based on rock cutting theory, and the distortion law of stress and displacement of carbide tip, pick arbor and pick holder were obtained. The results show that the maximum stress appearing in pick carbide tip and its weld site is 371MPa, maximum stress of pick holder appearing in its weld site is 157MPa. Consequently, the quality of the weld should be ensured in processing and manufacturing or welding installation to reduce the performance of carbide tip and pick holder drop. The maximum displacement of assembly body of conical pick is 1.14mm, which has little influence on the structure mechanics performance of assembly body. The research results could provide some guidance for designing, manufacturing or welding the assembly body of conical pick.


1984 ◽  
Vol 3 (1) ◽  
pp. 46-63
Author(s):  
J. A. Strasheim ◽  
R. J. Du Preez

The central role played by finite element analysis in the structural design of the main magnets, vacuum chamber and resonator of a 200 MeV open sector cyclotron facility for the National Accelerator Centre at Faure, South Africa, is described. The design evolved through a series of conceptual layouts of the structures involved. A finite element model of a main magnet, a main magnet vacuum chamber, one of a resonator, three of a resonator vacuum chamber and three of a valley vacuum chamber have been drawn up so far.


1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


Sign in / Sign up

Export Citation Format

Share Document