Analysis of the Design and Mechanical Performance about Hot Stamping Power Fitting Products

2014 ◽  
Vol 1063 ◽  
pp. 272-275 ◽  
Author(s):  
Ming Lin Zhou ◽  
Liang Wang ◽  
Zi Jian Wang ◽  
Yi Lin Wang ◽  
Yi Sheng Zhang

Hot stamping ultra-high strength steel not only plays an important role in automotive field, but also has potential application in transmission line fittings industry. According to the current development status of Chinese electrical power fittings and the demand for new technique, combined with hot stamping technology, a new solution for reduction of weight in transmission line fittings has been proposed. This paper focuses on a new lightweight connection fitting with multilayer stack structure of ultra-high strength boron steel, and the key issue in design and manufacturing process of the deep U-shaped hot stamping stacked steel sheet. Numerical simulation method combining the experimental data is also used to predict mechanical performance of the new connection fitting, which provides guidance for the manufacturing process.

2008 ◽  
Vol 575-578 ◽  
pp. 299-304 ◽  
Author(s):  
Jun Bao ◽  
Zhong Wen Xing ◽  
Yu Ying Yang

The quenchable boron steel is a novel type of ultra high strength steel used for automotive parts so as to reduce the weight of the whole automobile. The hot stamping processing experiments for bending parts were studied. The influence of the hot stamping processing parameters, such as the heating temperature, the heat holding time and the cooling water flow velocity, on the mechanics properties and microstructure of the hot stamping parts is obtained. And then the optimal ranges of these parameters are determined, which provides a basis for the control of the hot stamping process applied in complicated shape parts’ production.


2010 ◽  
Vol 160-162 ◽  
pp. 836-841
Author(s):  
Yun Kai Gao ◽  
Da Wei Gao ◽  
You Zhi Deng ◽  
Wei Cao

Ultra high strength steel plays an important role of light weighting in automotive industry. The hot forming simulation of car door bar is processed with 22MnB5 ultra high strength boron steel. FEM is built with the 12 nodes shell elements and MAT 106 is selected in LS-DYNA. The hot forming processes include two heat transfers. One is the process from the oven to the tools after the blank is heated. The other is the process after the blank contacts the tools. The hot forming simulation results are obtained by LS-DYNA. The results show that the thickness distribution, the forming limit and the maximum effective plastic strain and other performances attain to standards. It is proved that the hot forming simulation method is correct.


2021 ◽  
Vol 64 ◽  
pp. 916-926
Author(s):  
Ali Talebi-Anaraki ◽  
Tomoyoshi Maeno ◽  
Ryohei Ikeda ◽  
Kazui Morishita ◽  
Ken-ichiro Mori

2012 ◽  
Vol 184-185 ◽  
pp. 333-336 ◽  
Author(s):  
Hui Xie ◽  
Ya Ke Chen

Abstract. As an innovative process of manufacturing ultra high strength steel (UHSS), hot stamping or press hardening is a multi-physical coupling process with complex changes in thermal, mechanical and phase transformation. In this work, in order to study heat transfer from workpiece to upper & lower die and cooling water, a new approach, named Bulk Flow, is adopted to model the cooling ducts and to simulate heat transfer in hot stamping die. Not only can tool design, cooling duct layout and process parameters be studied and optimized to increase the cooling rate and to homogenize temperature distribution in workpiece, but also, the precision of hot stamping simulation be improved. The experimental results of boron steel components formed by the designed die show that the martensite is homogenous. It indicates the feasibility of the bulk flow method.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1136 ◽  
Author(s):  
Ling Kong ◽  
Yan Peng ◽  
Caiyi Liu

Traditional hot-stamping products have super-high strength, but their plasticity is usually low and their integrated mechanical properties are not excellent. Functionally graded property structures, a relatively novel configuration with a higher material utilization rate, have increasingly captured the attention of researchers. Hot stamping parts with tailored properties display the characteristics of local high strength and high plasticity, which can make up for the limitations of conventional hot stamping and optimize the crash safety performance of vehicles. This new idea provides a means of personalized control in the hot-stamping process. In this paper, a new strategy of local induction heating and press hardening was used for the hot stamping of boron steel parts with tailored properties, of which the microstructure from the hard zone to the soft zone shows a gradient distribution consisting of a martensite phase, multiphase and initial phase, with the hardness ranging from 550 HV to 180 HV. The re-deformation characteristics of hot stamping parts with tailored properties have been studied through the uniaxial tensile test, in cooperation with digital image correlation (DIC) and electron backscattered diffraction (EBSD) techniques. The experiments show that there are easily observable strain distribution characteristics in the re-deformation of hot stamping parts with tailored properties. In the process of tensile deformation, the initial phase zone takes the role of deformation and energy absorption, with the maximum strain before necking reaching 0.32. The local misorientation of this zone was high, and a large number of low angle grain boundaries were formed, while the proportion of small angle grain boundaries increased from 13.5% to 63.3%, and the average grain size decreased from 8.15 μm to 3.43 μm. Meanwhile, the martensite zone takes on the role of anti-collision protection, with a maximum strain of only 0.006, and its local misorientation is mostly unchanged. The re-deformation experimental results show that the hot stamping of boron steel parts with tailored properties meets the functional requirements of a hard zone for anti-collision and a soft zone for energy absorption, suitable for automobile safety parts.


2018 ◽  
Vol 15 ◽  
pp. 1119-1126 ◽  
Author(s):  
Yasutaka Suzuki ◽  
Ken-ichiro Mori ◽  
Tomoyoshi Maeno ◽  
Kazuki Sakakibara ◽  
Yohei Abe

2014 ◽  
Vol 1063 ◽  
pp. 237-243
Author(s):  
Zhong De Shan ◽  
Qin Tai Yan ◽  
Chao Jiang ◽  
Wen Juan Rong

Ultra High Strength Steel (UHSS) hot stamping technology is a special process which can enhance the steel tensile strength to 1500MPa. Appling this technology in producing vehicle structure parts can make car lighter and safer. In China there are more and more automobile enterprises adopt this technology. To master and extend the skill, China Academy of Machinery Science & Technology (CAM) have done systematic research, such as the strengthen mechanism of the steel, hot stamping key devices designing, forming and quenching integrated mould designing, stamping process parameters optimization, etc.. By now, CAM has mastered the mass production technology of vehicle parts, which can guarantee its shape and tensile strength, and produced such typical parts as door-beam, B pillar, etc.. The paper is an introduction of the research work and achievement about UHSS hot stamping developed by CAM.


Sign in / Sign up

Export Citation Format

Share Document