Mathematical Model of Refueling Emission for Gasoline Vehicles and Influencing Factors Analysis

2014 ◽  
Vol 1070-1072 ◽  
pp. 1917-1924
Author(s):  
Jun He ◽  
Ren He

In order to analyze the emission performance during the process of refueling, the mathematical models of refueling emission for vehicle under the proper simplified conditions were established based on the principle of time-varying and mass transfer in this paper. The models were applied to calculate the refueling emission rate of the fuel tank with and without a charcoal canister respectively, and simulation results of the model were analyzed numerically. Conclusions can be obtained as follows: the refueling emission rate of the fuel tank is 1.1201g / L without a charcoal canister; and 1.0815g / L with one, which is 3 - 4% less than the former on average. In addition, the refueling emission rate is positive related to the average temperature of the fuel tank, fuel average temperature and fuel Reid vapor pressure (RVP).

2012 ◽  
Vol 562-564 ◽  
pp. 1414-1417
Author(s):  
Zhi Yi Xu ◽  
Da Lu Guan ◽  
Ai Long Fan

The transport system is a nonlinear, time-varying, lagging large-scale systems. Fuzzy control does not need to build a precise mathematical model, can be easily integrated people's thinking and experience, and is suitable for applications in the traffic signal control system. Here,a self-adaptive optimal algorithm was used to improve the traditional fuzzy controller. Simulation results show that the improved system has higher availability.


2014 ◽  
Vol 989-994 ◽  
pp. 3100-3104
Author(s):  
Rui Hang Zhang ◽  
Zi Ye Wang ◽  
Run Ping Niu

TA mathematical model describing heat and mass transfer performance of packed-type parallel flow dehumidifier was set up. The numerical solution of differential equations was derived. Taking the heat and mass transfer coefficients obtained by experiments as the input parameters of the model, the impact of solution inlet parameters on outlet parameter of air was described. The simulation results indicated that the mathematical model could be used to predict the performance of liquid dehumidification. The results showed that the mathematical model can be of great value in the design and improvement of dehumidifier.


2011 ◽  
Vol 383-390 ◽  
pp. 6568-6573 ◽  
Author(s):  
Run Ping Niu

The performance of air dehumidifier using LiCl solution as the Liquid desiccant was studied with numerical methods. A mathematical model describing heat and mass transfer performance of air dehumidifierwas set up. The numerical solution of differential equations were derived. Taking the heat and mass transfer coefficients obtained by experiments as the input parameters of the model,the parameter distribution of air and solution was described. The simulation results corresponds very well to experimental data. Simulation results indicated that the mathematical model could be used to predict the performance of air dehumidifier. The results showed that the mathematical model can be of great value in the design and improvement of air dehumidifier.


2014 ◽  
Vol 556-562 ◽  
pp. 4085-4088 ◽  
Author(s):  
Yan Mei Zheng ◽  
Dong Xia ◽  
Yuan Peng Wang ◽  
Dao Hua Sun

Biosparging is one of the effective in situ-technology to removal the organic contaminants. The experiments of removing MTBE by biosparging were carried out in a soil column. the results showed that there were the tailing of contaminants in the column without microorganism according with the microorganism. The removal of organic contaminants by biosparging was simulated by a mathematical model, which considered the advective flux, diffusion, mechanical dispersion, interphase mass transfer and biodegrade. The simulation results agreed with the experimental results well.


2005 ◽  
Vol 5 (1) ◽  
pp. 65
Author(s):  
P. Pavasant ◽  
P. Wongsuchoto ◽  
V. Suksoir

A mathematical model was proposed to explain the gas-liquid mass transfer behavior in an airlift contactor (ALC). The model separated the airlift contactor into three sections: riser, gas separator, and downcomer. The riser and downcomer were described using the dispersion model whilst the gas separator was modeled as a .completely mixed tank. All parameters needed for the model were obtained from independent experiments both carried out in this work and reported elsewhere. Simulation results were compared with a number of experimental data obtained from the systems with various geometrical and operational conditions. It was shown that the model could predict the oxygen mass transfer between phases in the ALC with reasonable accuracy. Keywords: Airlift contactor (ALC), dispersion model, mass transfer, mathematical model, and verification.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Amir A. Bature ◽  
Salinda Buyamin ◽  
Mohamad N. Ahmad ◽  
Mustapha Muhammad ◽  
Auwalu A. Muhammad

In order to predict and analyse the behaviour of a real system, a simulated model is needed. The more accurate the model the better the response is when dealing with the real plant. This paper presents a model predictive position control of a Two Wheeled Inverted Pendulum robot. The model was developed by system identification using a grey box technique. Simulation results show superior performance of the gains computed using the grey box model as compared to common linearized mathematical model. 


Sign in / Sign up

Export Citation Format

Share Document