A Proposal of a Haptic System for Real-Time Interaction with Clay-Like Objects

2014 ◽  
Vol 1079-1080 ◽  
pp. 631-637
Author(s):  
Lan Hai Liu ◽  
Satoshi Miyake ◽  
Katsuhito Akahane ◽  
Makoto Sato

People often interact with deformable objects when they are kneading clay or making traditional desserts, either directly with their hands and fingers or through tools. Haptic interactions with virtual clay-like objects would significantly make the simulations more interesting and more real. However, to achieve a stable and real-time simulation of a clay-like particle system with high viscosity is challenging. In this research, we propose a novel method that allows real-time haptic interaction with clay-like objects. The particle system is based on a SPH(Smoothed-Particle Hydrodynamics) model, and the procedure of the conventional SPH method for fluid simulation is improved for simulating a particle system especially of high viscosity. The haptic rendering is done by a string-based haptic interface SPIDAR-G. We evaluate the performance and the stability of the proposed method in the end.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bangquan Liu ◽  
Zhen Liu ◽  
Dechao Sun ◽  
Chunyue Bi

Making unconventional emergent plan for dense crowd is one of the critical issues of evacuation simulations. In order to make the behavior of crowd more believable, we present a real-time evacuation route approach based on emotion and geodesic under the influence of individual emotion and multi-hazard circumstances. The proposed emotion model can reflect the dynamic process of individual in group on three factors: individual emotion, perilous field, and crowd emotion. Specifically, we first convert the evacuation scene to Delaunay triangulation representations. Then, we use the optimization-driven geodesic approach to calculate the best evacuation path with user-specified geometric constraints, such as crowd density, obstacle information, and perilous field. Finally, the Smooth Particle Hydrodynamics method is used for local avoidance of collisions with nearby agents in real-time simulation. Extensive experimental results show that our algorithm is efficient and well suited for real-time simulations of crowd evacuation.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Weihong Wang ◽  
Zhongzhou Jiang ◽  
Honglin Qiu ◽  
Wei Li

Simulating fluid scenes in 3DGIS is of great value in both theoretical research and practical applications. To achieve this goal, we present an algorithm for simulation of fluid scenes based on smoothed particle hydrodynamics. A 3D spatial grid partition algorithm is proposed to increase the speed for searching neighboring particles. We also propose a real-time interactive algorithm about particle and surface topography. We use Marching Cubes algorithm to extract the surface of free moving fluids from particles data. Experiments show that the algorithms improve the rate of rendering frame in realtime, reduce the computing time, and extract good real effects of fluid surface.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2283 ◽  
Author(s):  
Luigi Pellegrino ◽  
Carlo Sandroni ◽  
Enea Bionda ◽  
Daniele Pala ◽  
Dimitris T. Lagos ◽  
...  

The complexity of a smart grid with a high share of renewable energy resources introduces several issues in testing power equipment and controls. In this context, real-time simulation and Hardware in the Loop (HIL) techniques can tackle these problems that are typical for power system testing. However, implementing a convoluted HIL setup in a single infrastructure can be physically impossible or can increase the time required to test a smart grid application in detail. This paper introduces the Joint Test Facility for Smart Energy Networks with Distributed Energy Resources (JaNDER) that allows users to exchange data in real-time between two or more infrastructures. This tool enables the integration of infrastructures, exploiting the synergies between them, and creating a virtual infrastructure that can perform more experiments using a combination of the resources installed in each infrastructure. In particular, JaNDER can extend a HIL setup. In order to validate this new testing concept, a coordinated voltage controller has been tested in a Controller HIL setup where JaNDER was used to interact with an actual On Load Tap Changer (OLTC) controller located in a remote infrastructure. The results show that the latency introduced by JaNDER is not critical; hence, under certain circumstances, it can be used to expand the real-time testing without affecting the stability of the experiment.


2020 ◽  
Vol 638 ◽  
pp. A140
Author(s):  
Robert Wissing ◽  
Sijing Shen

We present a novel method of magnetohydrodynamics (MHD) within the smoothed particle hydrodynamics scheme (SPMHD) using the geometric density average force expression. Geometric density average within smoothed particle hydrodynamics (GDSPH) has recently been shown to reduce the leading order errors and greatly improve the accuracy near density discontinuities, eliminating surface tension effects. Here, we extend the study to investigate how SPMHD benefits from this method. We implement ideal MHD in the GASOLINE2 and CHANGA codes with both GDSPH and traditional smoothed particle hydrodynamics (TSPH) schemes. A constrained hyperbolic divergence cleaning scheme was employed to control the divergence error and a switch for artificial resistivity with minimized dissipation was also used. We tested the codes with a large suite of MHD tests and showed that in all problems, the results are comparable or improved over previous SPMHD implementations. While both GDSPH and TSPH perform well with relatively smooth or highly supersonic flows, GDSPH shows significant improvements in the presence of strong discontinuities and large dynamic scales. In particular, when applied to the astrophysical problem of the collapse of a magnetized cloud, GDSPH realistically captures the development of a magnetic tower and jet launching in the weak-field regime, while exhibiting fast convergence with resolution, whereas TSPH failed to do so. Our new method shows qualitatively similar results to those of the meshless finite mass/volume schemes within the GIZMO code, while remaining computationally less expensive.


2009 ◽  
Vol 29 (1) ◽  
pp. 258-260 ◽  
Author(s):  
Yin-xia WU ◽  
Lei-ting CHEN ◽  
Ming-yun HE

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuchun Jia ◽  
Yulong Lei ◽  
Xianghuan Liu ◽  
Yao Fu ◽  
Jianlong Hu

Purpose The lubrication of the high-speed reducer of an electric vehicle is investigated. The specific contents include visualization of the flow field inside reducer, lubrication evaluation of bearings and efficiency experiment. Design/methodology/approach The flow field inside reducer at five working conditions: straight, uphill, downhill, left lean and right lean is simulated by smoothed particle hydrodynamics (SPH). According to the instantaneous number of particles through bearings, the lubrication states of bearings are evaluated. The test platform is set up to measure the efficiency of the reducer. Findings The flow field inside the reducer is obtained, the lubrication of bearings needs to be improved, the efficiency of the electric vehicle reducer meets the requirement. Originality/value The SPH method is used to simulate lubrication instead of using the traditional grid-based finite volume method. A novel method to evaluate the lubrication of bearings is proposed. The method and conclusions can guide electric vehicle reducer design.


Sign in / Sign up

Export Citation Format

Share Document