Morphology and Topology of Coherent Scattering Regions of the Fe-Mn-C Steel Fine Structure

2015 ◽  
Vol 1085 ◽  
pp. 84-90
Author(s):  
Anna P. Zykova ◽  
Irina Kurzina ◽  
Mihail Yu. Novomejsky ◽  
Yuriy D. Novomejsky

The interaction of components in modifying mixtures with the elements of Fe-Mn-С alloys hyperfine structure is investigated. Comprehensive study of the modified material microstructure is conducted. The substructure of Fe-Mn-С alloys is shown to undergo significant changes. The produced castings are characterized with enhanced physical-and-chemical and technological properties

2021 ◽  
pp. 16-21

The purpose of this study is study of the physical and chemical properties of the overburden of the Dzherdanak deposit. The chemical and mineralogical composition of the overburden of the Djerdanak deposit has been studied by the methods of X-ray and thermography, electron microscopy and infrared spectroscopy. The main phases are quartz, kaolinite and muscovite. The study of the fine structure of the rock under an electron microscope showed the homogeneity of the rock with pronounced uniform inclusions, which is preserved even after firing. Changes in the rock after firing at 1050 °C have been determined. The formation of mullite at this temperature has been established.


Author(s):  
Wei Jiang ◽  
Kadda Yahiaoui ◽  
Chang J. Wang ◽  
Frank R. Hall ◽  
Tahar Laoui

This contribution deals with the complex temperature profiles that are generated by the welding process in the intersection region of thick walled, cylinder-cylinder junctions. These affect material microstructure, mechanical properties and residual stresses. Knowledge of the thermal history and temperature distributions are thus critical in developing control schemes for acceptable residual stress distributions to improve in-service component behavior. A comprehensive study of 3D temperature distributions in a stainless steel tee branch junction during a multipass welding process is presented. A newly developed partitioning technique has been used to mesh the complex intersection areas of the welded junction. Various phenomena associated with welding, such as temperature dependent material properties, heat loss by convection and latent heat have been taken into consideration. The temperature distribution at various times after deposition of certain passes and the thermal cycles at various locations are reported. The results obtained in this study will be used for on-going and future analysis of residual stress distributions. The meshing technique and modeling method can also be applied to other curved, multipass welds in complex structures.


1978 ◽  
Vol 56 (7) ◽  
pp. 862-872 ◽  
Author(s):  
James W. Kimbrough ◽  
Gerald L. Benny

Ultrastructural and cytochemical studies on the ascus of Lasiobolus monascus are presented. Apothecia in various stages of development were obtained in culture and prepared for both light and electron microscopic observations. Ultrathin sections for electron microscopic inspection were often treated with silver methenamine to enhance wall characteristics. Ascus development was followed from fertilization to maturity.In this species, the ascogonium enlarges after fertilization to become the ascus mother cell. Two pores are present in the young ascus, one connecting it to the antheridium and another between the ascus and stalk cell. The ultrastructural features of these pores in the young and maturing ascus are described. During ascus enlargement, as many as four wall layers are found when poststained with silver methenamine. Only two layers are clearly distinguishable when poststained with uranyl acetate and lead citrate. The apical zone of dehiscence is characterized by a distinct annular swelling which appears during early ascosporogenesis. By spore maturation, this swelling is not evident either at the light or electron microscopic level. Instead, there appear to be both physical and chemical changes in the area of dehiscence. The wall is distinctly thinner and much more electron transparent in the area of dehiscence when treated with silver methanamine.


1993 ◽  
Vol 48 (4) ◽  
pp. 570-576 ◽  
Author(s):  
N. Heineking ◽  
H. Dreizler

Abstract The complicated nuclear quadrupole hyperfine structure and methyl torsional fine structure in the rotational spectra of N,N-dimethylformamide and N-nitrosodimethylamine have been studied using microwave Fourier transform spectroscopy. It has been found that both molecules are rather similar in terms of their parameters of methyl group internal rotation as well as in terms of their amino nitrogen quadrupole coupling constants.


Author(s):  
V. N. Arisova ◽  
A. F. Trudov ◽  
A. I. Bogdanov ◽  
A. E. Birshbaeva ◽  
M. A. Razuvaev

The results of studies of the characteristics of the fine structure of a bimetal made of stainless steel 50Kh15M2F and carbon steel 20 after explosion welding and subsequent heat treatment in the joint zone are presented. It was found that normalization at temperatures above 900 ° C leads to a martensitic transformation in steel 50Cr15Мo2V, which is accompanied by an increase in hardness and the development of a fine structure: an increase in the level of elastic deformation of the crystal lattice and fragmentation of coherent scattering regions.


Sign in / Sign up

Export Citation Format

Share Document