Wettability Modifier for Enhanced Oil Recovery in Carbonate Reservoir: An Overview

2015 ◽  
Vol 1113 ◽  
pp. 643-647
Author(s):  
Noor Azreen Jilani ◽  
Nur Hashimah Alias ◽  
Tengku Amran Tengku Mohd ◽  
Nurul Aimi Ghazali ◽  
Effah Yahya

This article is an overview of potential application of wettability modifier to enhance oil recovery in carbonate reservoir. In oil and gas industry, oil recovery can be divided into three stages which are primary recovery, secondary recovery and tertiary recovery. The primary recovery is the initial stages of oil recovery. At this stage, oil was displaced toward production well by natural drive mechanisms that naturally exist in the reservoir. Water is commonly used to enhance oil recovery by injected into the reservoir because of it is commercially available, less expensive and capable to maintain the reservoir pressure. In conclusion, smart water flooding is a new technique to solve the complexity problem of carbonate reservoir by manipulating the salinity and ionic composition in high temperature. Hence, smart water can be an excellent candidate as a displacing fluid in chemical flooding for enhanced the oil recovery (EOR).

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Alibi Kilybay ◽  
Bisweswar Ghosh ◽  
Nithin Chacko Thomas

In the oil and gas industry, Enhanced Oil Recovery (EOR) plays a major role to meet the global requirement for energy. Many types of EOR are being applied depending on the formations, fluid types, and the condition of the field. One of the latest and promising EOR techniques is application of ion-engineered water, also known as low salinity or smart water flooding. This EOR technique has been studied by researchers for different types of rocks. The mechanisms behind ion-engineered water flooding have not been confirmed yet, but there are many proposed mechanisms. Most of the authors believe that the main mechanism behind smart water flooding is the wettability alteration. However, other proposed mechanisms are interfacial tension (IFT) reduction between oil and injected brine, rock dissolution, and electrical double layer expansion. Theoretically, all the mechanisms have an effect on the oil recovery. There are some evidences of success of smart water injection on the field scale. Chemical reactions that happen with injection of smart water are different in sandstone and carbonate reservoirs. It is important to understand how these mechanisms work. In this review paper, the possible mechanisms behind smart water injection into the carbonate reservoir with brief history are discussed.


Researchers have proved the significance of water injection by tuning its composition and salinity into the reservoir during smart water flooding. Once the smart water invades through the pore spaces, it destabilises crude oil-brine-rock (COBR) that leads to change in wettability of the reservoir rocks. During hydrocarbon accumulation and migration, polar organic compounds were being adsorbed on the rock surface making the reservoir oil/mixed wet in nature. Upon invasion of smart water, due to detachment of polar compounds from the rock surfaces, the wettability changes from oil/mixed wet to water wet thus enhances the oil recovery efficiency. The objective of this paper is to find optimum salinity and ionic composition of the synthetic brines at which maximum oil recovery would be observed. Three core flood studies have been conducted in the laboratory to investigate the effect of pH, composition and salinity of the injected brine over oil recovery. Every time, flooding has been conducted at reservoir formation brine salinity i.e at 1400 ppm followed by different salinities. Here, tertiary mode of flooding has been carried out for two core samples while secondary flooding for one. Results showed maximum oil recovery by 40.12% of original oil in place (OOIP) at 1050ppm brine salinity at secondary mode of flooding. So, optimized smart water has been proposed with 03 major salts, KCl, MgCl2 and CaCl2 in secondary mode of flooding that showed maximum oil recovery in terms of original oil in place.


2020 ◽  
Vol 17 (5) ◽  
pp. 1318-1328
Author(s):  
Sara Habibi ◽  
Arezou Jafari ◽  
Zahra Fakhroueian

Abstract Smart water flooding, as a popular method to change the wettability of carbonate rocks, is one of the interesting and challenging issues in reservoir engineering. In addition, the recent studies show that nanoparticles have a great potential for application in EOR processes. However, little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery. In this study, stability, contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO42− and Ca2+ ions in the presence of nanofluid on EOR processes. The amine/organosiloxane@Al2O3/SiO2 (AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here. However, for the first time the application of this nanocomposite along with smart water has been studied in this research. Results show that by increasing the concentrations of calcium and sulfate ions in smart water, oil recovery is improved by 9% and 10%, respectively, compared to seawater. In addition, the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery. Finally, the best performance was observed in smart water containing two times of sulfate ions concentration (SW2S) with nanofluids, showing increased efficiency of about 7.5%.


Author(s):  
Essa Georges Lwisa

Enhanced Oil Recovery (EOR) techniques are currently one of the top priorities of technological development in the oil industry owing to the increasing demand for oil and gas, which cannot be fulfilled by primary or secondary production methods. The main function of the enhanced oil recovery process is to displace oil in the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. moreover these injecting fluids can alter the reservoir`s properties; for example they can lower the interfacial tension (IFT) between oil and water, alter the rocks` wettability, change the pH value, form emulsions aid in clay migration and reduce the oil viscosity. In this chapter, we will discuss the following methods of chemical enhanced oil recovery: polymer flooding, surfactant flooding, alkaline flooding and smart water flooding. In addition, we will review the merits and demerits of each method and conclude the chapter with our recommendations


2021 ◽  
Vol 73 (01) ◽  
pp. 12-13
Author(s):  
Manas Pathak ◽  
Tonya Cosby ◽  
Robert K. Perrons

Artificial intelligence (AI) has captivated the imagination of science-fiction movie audiences for many years and has been used in the upstream oil and gas industry for more than a decade (Mohaghegh 2005, 2011). But few industries evolve more quickly than those from Silicon Valley, and it accordingly follows that the technology has grown and changed considerably since this discussion began. The oil and gas industry, therefore, is at a point where it would be prudent to take stock of what has been achieved with AI in the sector, to provide a sober assessment of what has delivered value and what has not among the myriad implementations made so far, and to figure out how best to leverage this technology in the future in light of these learnings. When one looks at the long arc of AI in the oil and gas industry, a few important truths emerge. First among these is the fact that not all AI is the same. There is a spectrum of technological sophistication. Hollywood and the media have always been fascinated by the idea of artificial superintelligence and general intelligence systems capable of mimicking the actions and behaviors of real people. Those kinds of systems would have the ability to learn, perceive, understand, and function in human-like ways (Joshi 2019). As alluring as these types of AI are, however, they bear little resemblance to what actually has been delivered to the upstream industry. Instead, we mostly have seen much less ambitious “narrow AI” applications that very capably handle a specific task, such as quickly digesting thousands of pages of historical reports (Kimbleton and Matson 2018), detecting potential failures in progressive cavity pumps (Jacobs 2018), predicting oil and gas exports (Windarto et al. 2017), offering improvements for reservoir models (Mohaghegh 2011), or estimating oil-recovery factors (Mahmoud et al. 2019). But let’s face it: As impressive and commendable as these applications have been, they fall far short of the ambitious vision of highly autonomous systems that are capable of thinking about things outside of the narrow range of tasks explicitly handed to them. What is more, many of these narrow AI applications have tended to be modified versions of fairly generic solutions that were originally designed for other industries and that were then usefully extended to the oil and gas industry with a modest amount of tailoring. In other words, relatively little AI has been occurring in a way that had the oil and gas sector in mind from the outset. The second important truth is that human judgment still matters. What some technology vendors have referred to as “augmented intelligence” (Kimbleton and Matson 2018), whereby AI supplements human judgment rather than sup-plants it, is not merely an alternative way of approaching AI; rather, it is coming into focus that this is probably the most sensible way forward for this technology.


Sign in / Sign up

Export Citation Format

Share Document