Investigation of Control Methods of Chatter Vibration Based on Analysis of End-Milling Chatter Mark

2016 ◽  
Vol 1136 ◽  
pp. 639-644 ◽  
Author(s):  
Ryosuke Shiota ◽  
Tatsuya Furuki ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Chatter vibration generated by coupling a work-piece, machine tools, and cutting tool is a serious problem for engineers. A regular pattern forms the machined surface when chatter vibration occurs. There must be a direct relationship between the relative displacement and machined surface. We propose a method for controlling chatter vibration of end-milling from a machined surface. Hammering tests were first carried out to determine the natural frequencies of machine tools and the tool system, which are likely to be the cause of vibration. We also propose a technique of applying reverse analysis to end-milling surfaces. The machined surface is assumed to include an essential index to easily control chatter vibration at the factory. We found that chatter vibration occurs near the frequency of the cutting tool, tool holder, and their coupling, not at the natural frequency, and the chatter vibration frequency can be calculated by analyzing the surface pattern and cutting conditions. Moreover, the proposed method was effective in analyzing chatter vibrations including more than two kinds of natural frequencies at the same time.

2014 ◽  
Vol 939 ◽  
pp. 201-208
Author(s):  
Kosuke Hattori ◽  
Hiroyuki Kodama ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Chatter vibration in cutting processes usually leads to surface finish degradation, tool damage, cutting noise, energy loss, etc. Self-excited vibration particularly seems to be a problem that is easily increased to large vibration. The regenerative effect is considered as one of the causes of chatter vibration. Although the chatter vibration occurs in various types of processing, the end-milling is a typical process that seems to cause the chatter vibration due to a lack of rigidity of one or more parts of the machine tools, cutting tool, and work-piece. The aim of our research is to propose a simple method to control chatter vibration of the end-milling process on the basis of a coupling model integrating the related various elements. In this study, hammering tests were carried out to measure the transfer function of a machine tool and cutting tool system, which seems to cause vibration. By comparing these results, finite elemental method (FEM) analysis models were constructed. Additionally, cutting experiments were carried out to confirm the chatter vibration frequencies in end-milling with a machining center. In the hammering tests, impulse hammer and multiple acceleration pick-ups are connected to a multi-channel FFT analyzer and estimate the natural frequencies and natural vibration modes. A simplified FEM model is proposed by circular section stepped beam elements on the basis of the hammering test results, considering a coupling effect. In comparisons of the calculated results and hammering test results, the vibration modes are in good agreement. As a result, the proposed model accurately predicts the chatter vibration considering several effects among the relating elements in end-milling. Moreover, it can be seen that the chatter vibration is investigated from a viewpoint of the integrating model of the end-milling process.


2016 ◽  
Vol 874 ◽  
pp. 423-428
Author(s):  
Kaito Aotani ◽  
Ryosuke Shiota ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Chatter vibration in end milling remains a serious problem for manufacturing engineers. Chatter vibration often leaves a characteristic pattern or chatter mark on the machined surface. Chatter marks are generated by the relative displacement of the tool and the workpiece. Closer observation of chatter marks may prove useful in understanding chatter vibration. In this study, we investigated chatter mark patterns on end-milled surfaces. Based on these observations, we proposed and demonstrated the effectiveness of an iterative analysis method to identify stable machining conditions and minimize chatter vibration in various operations without use of sensors under specific conditions.


2013 ◽  
Vol 7 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Lin Lu ◽  
◽  
Masahiko Sato ◽  
Hisataka Tanaka ◽  

Chatter vibration frequently occurs in ball end milling. If the characteristics of the cutting tool system and cutting process are known, chatter stability in ball end milling can be evaluated. Hence, in this paper, a chatter-avoidance strategy based on a regenerative chatter theory is proposed to prevent the occurrence of chatter. This consists of a simulation of chatter stability and cutting condition control. When the characteristics of a vibration system change, this chatter-avoidance strategy cannot cope with it. Therefore, another chatter-avoidance control algorism that changes cutting parameters on a machining center is proposed. This can adapt to the change in the characteristics of the vibration systemduring cutting. The effectiveness of the two chatter-avoidance methods proposed is examined through experiments.


Author(s):  
Zongze Li ◽  
Ryuta Sato ◽  
Keiichi Shirase

Abstract Motion error of machine tool feed axes influences the machined workpiece accuracy. However, the influences of each error sources are not identical; some errors do not influence the machined surface although some error have significant influences. In addition, five-axis machine tools have more error source than conventional three-axis machine tools, and it is very tough to predict the geometric errors of the machined surface. This study proposes a method to analyze the relationships between the each error sources and the error of the machined surface. In this study, a kind of sphere-shaped workpiece is taken as a sample to explain how the sensitivity analysis makes sense in ball-end milling. The results show that the method can be applied for the axial errors, such as motion reversal errors, to make it clearer to obverse the extent of each errors. In addition, the results also show that the presented sensitivity analysis is useful to investigate that how the geometric errors influence the sphere surface accuracy. It can be proved that the presented method can help the five-axis machining center users to predict the machining errors on the designed surface of each axes error motions.


2014 ◽  
Vol 657 ◽  
pp. 53-57 ◽  
Author(s):  
Sándor Ravai Nagy ◽  
Ioan Paşca ◽  
Mircea Lobonțiu ◽  
Mihai Banica

Machining of Complex Concave or Convex Surfaces Requires the Use of Ball End Milling Cutters. Obtaining the Expected Surface Quality Compete Various Technological Factors which should be Taken into Account. Following the Machining of the Surface with Different Inclination Angles between the Cutting Tool Axes and the Machined Surface, Significant Changes of the Surface Roughness have been Observed. Based on the Tests Performed, we can Determine the Range of the Tool Inclination Angle, which is the Best for the Surface Quality. we have also Made a Correlation between the Cutting Speeds, Inclination Angle of the Cutting Tool Toward the Machined Surface for an Obtained Surface Quality. the Presented Results are Based on Experimental Research in Industrial Conditions by Using CNC Machine Tools with 5 Axes. the Tests have been Performed on the C45 Material, Heat Treated to 34HRC.


2016 ◽  
Vol 821 ◽  
pp. 649-654
Author(s):  
Marek Stránský ◽  
Jaroslav Horský

A turning knife contacts a work piece during turning. Due to friction, heat is produced proportionally to the turning speed. The resulting temperature influences the quality of the machined surface and wear of the knife. Thus, new machine tools must be developed that minimize the production of unwanted heat. To accomplish this task, a new experimental knife was prepared with thermocouples both built into it and welded to its surface. The measurement process was supplemented by thermovision. Heat flux and surface temperatures were computed from subsurface data using a one-dimensional inverse relationship. The detailed temperature distribution on the surface of the turning knife was determined using a combination of these methods.


2021 ◽  
Author(s):  
Haruki Minetaka ◽  
Nobutoshi Ozaki ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Abstract In this study, a new analysis method using a wavelet transform was considered to evaluate the chatter vibration generated during end milling. End milling often generates vibrations between the tool and work material, called chatter vibration, which causes deterioration of the finished surface and breakage of the tool. Therefore, countermeasures to detect chatter vibration at an early stage have been attempted in the past by using fast Fourier transform (FFT) and short-time Fourier transform (STFT) methods and monitoring the dynamic stability of the cutting process. However, the FFT analysis method assumes steady-state vibration, and the STFT method does not have sufficient frequency resolution. In contrast, the wavelet transform is excellent for analyzing non-stationary vibrations and has a high noise separation capability. To fully validate the analysis method, a groove was added to the machined surface, so that the cutting condition changed with time, and the cutting vibration under the condition where the disturbance was involuntary was analyzed. As a result, it was possible to identify minute fluctuations in chatter vibration, which could not be obtained using the STFT method.


2015 ◽  
Author(s):  
Sunday J. Ojolo ◽  
Olumuwiya Agunsoye ◽  
Oluwole Adesina ◽  
Gbeminiyi M. Sobamowo

Temperature field in metal cutting process is one of the most important phenomena in machining process. Temperature rise in machining directly or indirectly determines other cutting parameters such as tool life, tool wear, thermal deformation, surface quality and mechanics of chip formation. The variation in temperature of a cutting tool in end milling is more complicated than any other machining operation especially in high speed machining. It is therefore very important to investigate the temperature distribution on the cutting tool–work piece interface in end milling operation. The determination of the temperature field is carried out by the analysis of heat transfer in metal cutting zone. Most studies previously carried out on the temperature distribution model analysis were based on analytical model and with the used of conventional machining that is continuous cutting in nature. The limitations discovered in the models and validated experiments include the oversimplified assumptions which affect the accuracy of the models. In metal cutting process, thermo-mechanical coupling is required and to carry out any temperature field determination successfully, there is need to address the issue of various forces acting during cutting and the frictional effect on the tool-work piece interface. Most previous studies on the temperature field either neglected the effect of friction or assumed it to be constant. The friction model at the tool-work interface and tool-chip interface in metal cutting play a vital role in influencing the modelling process and the accuracy of predicted cutting forces, stress, and temperature distribution. In this work, mechanistic model was adopted to establish the cutting forces and also a new coefficient of friction was also established. This can be used to simulate the cutting process in order to enhance the machining quality especially surface finish and monitor the wear of tool.


2017 ◽  
Vol 83 (848) ◽  
pp. 16-00362-16-00362 ◽  
Author(s):  
Toshiki HIROGAKI ◽  
Eiichi AOYAMA ◽  
Ryosuke SHIOTA ◽  
Kaito AOTANI

1970 ◽  
Vol 92 (2) ◽  
pp. 385-390
Author(s):  
A. O. Schmidt ◽  
Inyong Ham ◽  
Serge Kunica ◽  
Amitabha Bhattacharyya ◽  
James Mason

External disturbances, as well as internal ones, cause a relative motion between the cutter and workpiece and thereby influence detrimentally the surface finish and machining accuracy. By properly mounting the machine tools upon soft isolators thus reducing the system’s natural frequencies, the amplitude of relative displacement between the cutter and workpiece can be decreased, thereby improving surface finish and accuracy.


Sign in / Sign up

Export Citation Format

Share Document