Estimation of Chatter Vibration Under End-Milling Process With a Wavelet Transform

2021 ◽  
Author(s):  
Haruki Minetaka ◽  
Nobutoshi Ozaki ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Abstract In this study, a new analysis method using a wavelet transform was considered to evaluate the chatter vibration generated during end milling. End milling often generates vibrations between the tool and work material, called chatter vibration, which causes deterioration of the finished surface and breakage of the tool. Therefore, countermeasures to detect chatter vibration at an early stage have been attempted in the past by using fast Fourier transform (FFT) and short-time Fourier transform (STFT) methods and monitoring the dynamic stability of the cutting process. However, the FFT analysis method assumes steady-state vibration, and the STFT method does not have sufficient frequency resolution. In contrast, the wavelet transform is excellent for analyzing non-stationary vibrations and has a high noise separation capability. To fully validate the analysis method, a groove was added to the machined surface, so that the cutting condition changed with time, and the cutting vibration under the condition where the disturbance was involuntary was analyzed. As a result, it was possible to identify minute fluctuations in chatter vibration, which could not be obtained using the STFT method.

2012 ◽  
Author(s):  
Che Hassan Che Haron ◽  
Andanastuti Muchtar ◽  
Nik Faizu Nik Kundor

Projek ini dijalankan bertujuan untuk mengkaji kesan proses pengisaran terhadap keutuhan permukaan keluli perkakas D2. Dalam kajian ini, keluli perkakas kerja sejuk AISI D2 yang telah dikeraskan kepada 62 HRC dimesin menggunakan sisip karbida bersalut CVD boleh indeks yang dipegang oleh perkakas pengisaran hujung berdiameter 20 mm. Siri–siri ujian dijalankan dalam keadaan kering. Penilaian ke atas permukaan yang dimesin melibatkan kekasaran permukaan dan analisis mikrostruktur. Keputusan kajian menunjukkan bahawa tiada hubungan yang jelas di antara variasi kelajuan pemotongan dan suapan terhadap kekasaran permukaan. Umumnya, permukaan yang dihasilkan adalah sangat licin dengan nilai Ra berada dalam julat 0.10 μm – 0.43 μm dan analisis permukaan pada sampel–sampel ujikaji juga mendapati hampir tiada perubahan dapat dikesan pada mikrostruktur bahagian bawah permukaan yang dimesin. Walau bagaimanapun, pada kelajuan pemotongan tertinggi (160 m/min) dan suapan yang tinggi (0.02 mm/sisip), terdapat kesan termampat dan terherot pada mikrostruktur pada kedalaman yang sangat cetek iaitu lebih kurang 2.2 μm dari permukaan termesin. Kata kunci: Keutuhan permukaan, keluli perkakas terkeras, pengisaran hujung, mikrostruktur, perkakas karbida bersalut The effect of milling process on the surface integrity of newly machined surface of D2 tool steel is presented. The hardened AISI D2 (62 HRC) was machined under dry cutting conditions using a 20 mm diameter end–milling tool with indexable CVD coated carbide insert. Analyses revealed that the variation in cutting speeded and feed did not significantly affect the surface roughness of the machined surface. Generally, the surfaces produced are very smooth with Ra values in the range of 0.1 – 0.43 μm, and studies showed almost no microstructure alteration on the machined surfaces. However, at the highest cutting condition, i.e. a cutting speed of 160 m/min, and feed of 0.02 mm/tooth, some compression and distortion effects were detected on the microstructure at the very shallow depth of approximately 2.2 μm from the machined surface. Key words: Surface integrity, hardened tool steel, end-milling, microstructure, coated carbide tool


2016 ◽  
Vol 874 ◽  
pp. 423-428
Author(s):  
Kaito Aotani ◽  
Ryosuke Shiota ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Chatter vibration in end milling remains a serious problem for manufacturing engineers. Chatter vibration often leaves a characteristic pattern or chatter mark on the machined surface. Chatter marks are generated by the relative displacement of the tool and the workpiece. Closer observation of chatter marks may prove useful in understanding chatter vibration. In this study, we investigated chatter mark patterns on end-milled surfaces. Based on these observations, we proposed and demonstrated the effectiveness of an iterative analysis method to identify stable machining conditions and minimize chatter vibration in various operations without use of sensors under specific conditions.


2020 ◽  
Vol 2020.95 (0) ◽  
pp. 01_102
Author(s):  
Nobutoshi OZAKI ◽  
Shota MATSUI ◽  
Haruki MINETAKA ◽  
Soriano Carlos ◽  
Toshiki HIROGAKI ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Young Jeong ◽  
Je-Ryung Lee ◽  
Hyeonjin Park ◽  
Joonkyo Jung ◽  
Doo-Sun Choi ◽  
...  

AbstractMicrowave absorbers using conductive ink are generally fabricated by printing an array pattern on a substrate to generate electromagnetic fields. However, screen printing processes are difficult to vary the sheet resistance values for different regions of the pattern on the same layer, because the printing process deposits materials at the same height over the entire surface of substrate. In this study, a promising manufacturing process was suggested for engraved resistive double square loop arrays with ultra-wide bandwidth microwave. The developed manufacturing process consists of a micro-end-milling, inking, and planing processes. A 144-number of double square loop array was precisely machined on a polymethyl methacrylate workpiece with the micro-end-milling process. After engraving array structures, the machined surface was completely covered with the developed conductive carbon ink with a sheet resistance of 15 Ω/sq. It was cured at room temperature. Excluding the ink that filled the machined double square loop array, overflowed ink was removed with the planing process to achieve full filled and isolated resistive array patterns. The fabricated microwave absorber showed a small radar cross-section with reflectance less than − 10 dB in the frequency band range of 8.0–14.6 GHz.


Author(s):  
Issam Abu-Mahfouz ◽  
Amit Banerjee ◽  
A. H. M. Esfakur Rahman

The study presented involves the identification of surface roughness in Aluminum work pieces in an end milling process using fuzzy clustering of vibration signals. Vibration signals are experimentally acquired using an accelerometer for varying cutting conditions such as spindle speed, feed rate and depth of cut. Features are then extracted by processing the acquired signals in both the time and frequency domain. Techniques based on statistical parameters, Fast Fourier Transforms (FFT) and the Continuous Wavelet Transforms (CWT) are utilized for feature extraction. The surface roughness of the machined surface is also measured. In this study, fuzzy clustering is used to partition the feature sets, followed by a correlation with the experimentally obtained surface roughness measurements. The fuzzifier and the number of clusters are varied and it is found that the partitions produced by fuzzy clustering in the vibration signal feature space are related to the partitions based on cutting conditions with surface roughness as the output parameter. The results based on limited simulations are encouraging and work is underway to develop a larger framework for online cutting condition monitoring system for end milling.


2013 ◽  
Vol 7 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Lin Lu ◽  
◽  
Masahiko Sato ◽  
Hisataka Tanaka ◽  

Chatter vibration frequently occurs in ball end milling. If the characteristics of the cutting tool system and cutting process are known, chatter stability in ball end milling can be evaluated. Hence, in this paper, a chatter-avoidance strategy based on a regenerative chatter theory is proposed to prevent the occurrence of chatter. This consists of a simulation of chatter stability and cutting condition control. When the characteristics of a vibration system change, this chatter-avoidance strategy cannot cope with it. Therefore, another chatter-avoidance control algorism that changes cutting parameters on a machining center is proposed. This can adapt to the change in the characteristics of the vibration systemduring cutting. The effectiveness of the two chatter-avoidance methods proposed is examined through experiments.


2014 ◽  
Vol 939 ◽  
pp. 201-208
Author(s):  
Kosuke Hattori ◽  
Hiroyuki Kodama ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Chatter vibration in cutting processes usually leads to surface finish degradation, tool damage, cutting noise, energy loss, etc. Self-excited vibration particularly seems to be a problem that is easily increased to large vibration. The regenerative effect is considered as one of the causes of chatter vibration. Although the chatter vibration occurs in various types of processing, the end-milling is a typical process that seems to cause the chatter vibration due to a lack of rigidity of one or more parts of the machine tools, cutting tool, and work-piece. The aim of our research is to propose a simple method to control chatter vibration of the end-milling process on the basis of a coupling model integrating the related various elements. In this study, hammering tests were carried out to measure the transfer function of a machine tool and cutting tool system, which seems to cause vibration. By comparing these results, finite elemental method (FEM) analysis models were constructed. Additionally, cutting experiments were carried out to confirm the chatter vibration frequencies in end-milling with a machining center. In the hammering tests, impulse hammer and multiple acceleration pick-ups are connected to a multi-channel FFT analyzer and estimate the natural frequencies and natural vibration modes. A simplified FEM model is proposed by circular section stepped beam elements on the basis of the hammering test results, considering a coupling effect. In comparisons of the calculated results and hammering test results, the vibration modes are in good agreement. As a result, the proposed model accurately predicts the chatter vibration considering several effects among the relating elements in end-milling. Moreover, it can be seen that the chatter vibration is investigated from a viewpoint of the integrating model of the end-milling process.


2020 ◽  
Vol 22 (4) ◽  
pp. 31-40
Author(s):  
Andrei Markov ◽  
◽  
Vyacheslav Nekrasov ◽  
Jian Su ◽  
Azhar Salman ◽  
...  

Introduction. Today fiberglass is one of the most common composite materials. Therefore, its mechanical processing continues to be the subject of many studies. In many scientific publications, the influence of cutting modes and structural and geometric parameters of the tool on the roughness of the machined surface, cutting forces and wear of the cutting tool has been established. The purpose of this work is to study the effect of machining modes on delamination and roughness of fiberglass composites during end milling, as well as testing the hypothesis about the effect of torque on the delamination. The relevance of the study is due to the fact that delamination, along with roughness, has a significant impact on the quality of processing and subsequent assembly of the finished product. A criterion is proposed for assessing the magnitude of the delamination of composite materials during its machining. The results of experimental studies of the torque on the cutter, the relative coefficient of delamination and surface roughness from cutting conditions are presented. Methods: factorial experiment using an experimental assembly developed by the authors based on a piezoelectric torque sensor. The installation allows real-time recording of the change in torque during the milling process, depending on the modes of operation. Results and Discussion. A comparative analysis of the obtained dependences showed that the torque is directly related to delamination. To reduce the delamination, the depth of cut should be decreased, and in order to ensure the specified productivity, the feed and the rotational speed of the cutter should be increased. The presented results confirm the prospects of the developed approach aimed at machining new classes of composite materials.


Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. P19-P25 ◽  
Author(s):  
Satish Sinha ◽  
Partha S. Routh ◽  
Phil D. Anno ◽  
John P. Castagna

This paper presents a new methodology for computing a time-frequency map for nonstationary signals using the continuous-wavelet transform (CWT). The conventional method of producing a time-frequency map using the short time Fourier transform (STFT) limits time-frequency resolution by a predefined window length. In contrast, the CWT method does not require preselecting a window length and does not have a fixed time-frequency resolution over the time-frequency space. CWT uses dilation and translation of a wavelet to produce a time-scale map. A single scale encompasses a frequency band and is inversely proportional to the time support of the dilated wavelet. Previous workers have converted a time-scale map into a time-frequency map by taking the center frequencies of each scale. We transform the time-scale map by taking the Fourier transform of the inverse CWT to produce a time-frequency map. Thus, a time-scale map is converted into a time-frequency map in which the amplitudes of individual frequencies rather than frequency bands are represented. We refer to such a map as the time-frequency CWT (TFCWT). We validate our approach with a nonstationary synthetic example and compare the results with the STFT and a typical CWT spectrum. Two field examples illustrate that the TFCWT potentially can be used to detect frequency shadows caused by hydrocarbons and to identify subtle stratigraphic features for reservoir characterization.


2021 ◽  
Vol 12 (6) ◽  
pp. 329-335
Author(s):  
Ya. A. Turovsky ◽  
◽  
S. V. Borzunov ◽  
A. A. Vahtin ◽  
◽  
...  

The paper discusses the application of the method of co-variance analysis of noisy signals using the example of an electroencephalogram to increase the frequency resolution in relation to the phenomena of electrical activity of the brain. The method is focused primarily on signals presented in digital form. The possibility of increasing the frequency resolution in comparison with the method of Fourier transform and wavelet transform is shown.


Sign in / Sign up

Export Citation Format

Share Document