Contributions to the Environmental Impact of the Process of Welding Work in the Environment of Protective Gases

2016 ◽  
Vol 1138 ◽  
pp. 101-106
Author(s):  
Gheorghe Amza ◽  
Gabriel Iacobescu ◽  
Dan Florin Niţoi ◽  
Cătălin Gheorghe Amza ◽  
Zoia Apostolescu

Paper presents the main pollutants that appear Gas metal arc welding, the main chemical reactions take place in the melting bath where results the pollutants, determining the impact on the working environment by calculating the coefficient of pollution. The optimization of welding process gives a coefficient of minimum pollution and determines the influence of welding parameters of the system on the appearance of major pollutants elements.

2013 ◽  
Vol 339 ◽  
pp. 700-705 ◽  
Author(s):  
Victor Lopez ◽  
Arturo Reyes ◽  
Patricia Zambrano

The effect of heat input on the transformation of retained austenite steels transformation induced plasticity (TRIP) was investigated in the heat affected zone (HAZ) of the Gas Metal Arc Welding GMAW process. The determination of retained austenite of the HAZ is important in optimizing the welding parameters when welding TRIP steels, because this will greatly influence the mechanical properties of the welding joint due to the transformation of residual austenite into martensite due to work hardening. Coupons were welded with high and low heat input for investigating the austenite transformation of the base metal due to heat applied by the welding process and was evaluated by optical microscopy and the method of X-Ray Diffraction (XRD). Data analyzed shows that the volume fraction of retained austenite in the HAZ increases with the heat input applied by the welding process, being greater as the heat input increase and decrease the cooling rate, this due to variation in the travel speed of the weld path.


2011 ◽  
Vol 341-342 ◽  
pp. 16-20
Author(s):  
Mongkol Chaisri ◽  
Prachya Peasura

The research was study the effect of gas metal arc welding process parameters on mechanical property. The specimen was carbon steel ASTM A285 grade A which thickness of 6 mm. The experiments with full factorial design. The factors used in this study are shielding gas and voltage. The welded specimens were tested by tensile strength testing and hardness testing according to ASME boiler and pressure vessel code section IX 2007. The result showed that both of shielding gas and voltage had interaction on tensile strength and hardness at 95% confidential (P value < 0.05). Factors affecting the tensile strength are the most carbon dioxide and 27 voltage were tensile strength 213.43 MPa. And hardness maximum of 170.60 HV can be used carbon dioxide and 24 voltage. This research can be used as data in the following appropriate parameters to gas metal arc welding process.


2021 ◽  
Vol 100 (01) ◽  
pp. 13-26
Author(s):  
RICHARD DERRIEN ◽  
◽  
ETHAN MICHAEL SULLIVAN ◽  
STEPHEN LIU ◽  
ELODIE MOINE ◽  
...  

Because formation of silicate islands during gas metal arc welding is undesirable due to decreased productivity and decreased quality of welds, it is important to understand the mechanism of the formation of these silicate islands to mitigate their presence in the weld. The effects of welding parameters on the silicate formation rate were studied. Results showed that the applied voltage and oxidizing potential of the shielding gas were the parameters that most strongly influenced the amount of silicates formed on the surface of the weld bead. High-speed video was used to observe the formation of silicate islands during the welding process, which showed that the silicates were present at each stage of the welding process, including the initial melting of the wire electrode, and grew by coalescence. A flow pattern of the silicate islands was also proposed based on video analysis. An electromagnetic levitation system was used to study the growth kinetics of the silicate islands. Silicate coverage rate was found to increase with increasing oxidizing time, increasing oxidizing potential of the atmosphere, and increasing content of alloying elements except for Ti.


2011 ◽  
Vol 110-116 ◽  
pp. 2963-2968 ◽  
Author(s):  
Masood Aghakhani ◽  
Ehsan Mehrdad ◽  
Ehsan Hayati ◽  
Maziar Mahdipour Jalilian ◽  
Arash Karbasian

Gas metal arc welding is a fusion welding process which has got wide applications in industry. In order to obtain a good quality weld, it is therefore, necessary to control the input welding parameters. In other words proper selection of input welding parameters in this process contribute to weld productivity. One of the important welding output parameters in this process is weld dilution affecting the quality and productivity of weldment. In this research paper using Taguchi method of design of experiments a mathematical model was developed using parameters such as, wire feed rate (W), welding voltage (V), nozzle-to-plate distance (N), welding speed (S) and gas flow rate (G) on weld dilution. After collecting data, signal-to-noise ratios (S/N) were calculated and used in order to obtain the optimum levels for every input parameter. Subsequently, using analysis of variance the significant coefficients for each input factor on the weld dilution were determined and validated. Finally a mathematical model based on regression analysis for predicting the weld dilution was obtained. Results show that wire feed rate (W),arc voltage (V) have increasing effect while Nozzle-to-plate distance (N) and welding speed (S) have decreasing effect on the dilution whereas gas Flow rate alone has almost no effect on dilution but its interaction with other parameters makes it quite significant in increasing the weld dilution


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106790
Author(s):  
Rogfel Thompson Martinez ◽  
Guillermo Alvarez Bestard ◽  
Sadek C. Absi Alfaro

Sign in / Sign up

Export Citation Format

Share Document