Research on the Use of Robotized Tandem MAG Welding in Steel Plates Destined for the Manufacture of Pipelines

2016 ◽  
Vol 1138 ◽  
pp. 133-138 ◽  
Author(s):  
Daniela Maria Iovanas ◽  
Cosmin Toma ◽  
Radu Iovanas

The performed research focuses on the complete replacement of the pipeline manufacturing process consisting in welding on SAW+MIG / MAG generators with the robotized Tandem MIG / MAG welding procedure, with low energy consumption.The Tandem MAG procedure was experimented on X52 MS steel plates destined for the manufacture of pipelines, measuring 400x150x12 mm, with Y-joints (30o).The welded joints were executed horizontally and unilaterally, with flux bed support, 3 welding seams, using for filler material two wires of the same quality, EN ISO 14341: G 42 4 M G3Si1 (Filcord C), measuring 1.2 mm in diameter, and shielding gas EN ISO 14175 (CORGON 18).The entire technological welding process was carried out in fully robotized, laboratory conditions, using the QIROX -315 welding robot, fitted with Tandem MIG/MAG welding equipment, type QUINTO-GLC 603.The welding seams were executed with the same Tandem MAG welding head, with two wires, taking advantage of the possibility to rotate the welding head so as to obtain welding seams with the wires either positioned one after the other (tandem), or transversally (perpendicular to the welding direction), obtaining, by correlation with the welding speed, optimal linear energies, implicitly, seams of various widths and penetrations.The results of the tests concerning the characterization of the obtained welded joints corresponded to the mechanical – metallographic tests, falling within the ranges provided by the applicable standards.The welding parameters used in the robotized Tandem MAG procedure may lead to remarkable advantages concerning the use of energy and filler metal. Thus, linear energies are about 40% - 45% smaller than in the case of the classical SAW+MIG / MAG process, with positive effects on the mechanical and metallographic characteristics of the welded joints, leading to significant reductions in energy consumption. Furthermore, the use of filler materials (wire, shielding gas) decreases by 10% - 15% as compared to the classical SAW+MIG / MAG process, leading, implicitly, to lower costs.As a consequence of the obtained results, MAG Tandem welding procedure may become an alternative to SAW submerged arc welding and combined SAW and MIG / MAG welding and a classical reference method for the manufacture of pipelines

2015 ◽  
Vol 1128 ◽  
pp. 254-260 ◽  
Author(s):  
Radu Cristian Seculin ◽  
Barna Fazakas ◽  
Teodor Machedon Pisu ◽  
Mihai Alin Pop

The vertical MAG welding procedure is a difficult position to be executed because the trend of the molten bath flowing. This article aims to present the achievement of vertical welding joints with a linear device with a radial oscillation system that should achieve automatic vertical welds and the correlation of the welding parameters with the movement of the welding torch in order to obtain these, using the MAG procedure, protective gas M 21 (82% argon + 18% CO2), welding wire SG2, the material of the welded pieces S 355 JR. Samples will be cut from the welded steel plates and they will be characterized from the mechanical point of view (hardness, microstructure and macrostructure).


2021 ◽  
Vol 890 ◽  
pp. 25-32
Author(s):  
Alin Constantin Murariu ◽  
Aurel Valentin Bîrdeanu

In all industrial fields, the product requirements are more and more demanding. HSLA steels are designed to provide higher atmospheric corrosion resistance and improved mechanical properties than structural steels. The paper presents the results of an experimental program based on factorial design, applied to predict the mechanical properties of butt-welded joints of S420MC and S460MC hot-rolled, high-strength low-alloy (HSLA) steel plates with 2mm, 4mm and 8mm thickness. Gas Metal Arc Welding (GMAW) was used and correlations between the main process parameters and the related mechanical properties of the welded joints were found. Obtained mathematical correlations can be exploited to provide optimal combination of welding parameters to fit the quality requirements of the end-users for envisaged welded product.


Author(s):  
Anthony Pearson ◽  
Stephane Laymond ◽  
Mark Werner

MURPHY Sabah Oil Co. Ltd. has developed the Kikeh Field located offshore Malaysia in the South China Sea in a water depth of 1325m. This field development is based on a Floating Production Storage and Offloading unit (FPSO) and a Spar Dry Tree Unit (DTU). Fluids are transported in fluid transfer lines (FTL) using SBM’s newly developed and patented Gravity Actuated Pipe (GAP) system. Two key areas in the construction of the Kikeh GAP Fluid Transfer Line were Welding and Non-Destructive Examination (NDE). The welding of flowlines was performed using the Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) processes. The welding of the carrier pipe utilized the double-sided Submerged Arc Welding (SAW) process for tubular prefabrication and the manual/automated GTAW processes for girth welding in the field. Welding process selection for the carrier pipe was driven by the need for high weld quality in order to provide optimum fatigue performance. Extensive welding procedure development was carried out for the manual/automated GTAW techniques in order to determine optimum welding parameters as this constituted the most critical welding activity. Project specific welding procedure qualification was undertaken for all field welding activities. An Engineering Criticality Assessment (ECA) was performed to determine maximum allowable defect sizes for the welded joints. This ECA established that the welded joints had a low defect tolerance, which consequently dictated the necessity for an NDE technique providing a high level of flaw detection and accurate flaw sizing. Automated Ultrasonic Testing (AUT), using a Phased Array (PA) system based upon the ‘Pulse Echo Method’, enhanced with mapping images and ‘Time of Flight Diffraction’ (TOFD), was therefore nominated as the volumetric inspection method for the carrier pipe. The AUT system capabilities were verified by qualification, prior to mobilization to the field, to determine the system Probability of Detection values (POD) and imperfection height sizing accuracy as well as assessing the AUT operator(s) performance.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 561
Author(s):  
Seong Min Hong ◽  
Shinichi Tashiro ◽  
Hee-Seon Bang ◽  
Manabu Tanaka

In joining aluminum alloy to galvanized (GI) steel, the huge gap of thermophysical properties, defects by zinc from the steel surface, and formation of excessive brittle Fe-Al intermetallics (IMC) are the main factors that deteriorate the joint quality. In this study, alternating current pulse gas metal arc welding (AC pulse GMAW) was suggested as a solution with a mix of electrode positive and negative modes. A 1.2 mm thick AA5052 aluminum alloy and GI steel plates were joined using 1.2 mm diameter AA4047 filler wire. A comparative study on the joint interface was conducted varying the welding current and electrode-negative (EN) ratio to investigate the effect of different welding parameters on the growth of the Fe-Al intermetallics (IMC) layer, the effect of zinc, and the mechanical characteristics of the joints. It was confirmed that the change of polarity affects the distribution of zinc element in the joints. An increase in the EN ratio suppressed the growth of the IMC layer to 3.59 μm with decreased heat input. The maximum tensile-shear strength of the welded joints was approximately 171 MPa (78% joint efficiency) at the welding current of 50 A with 20% EN ratio.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2671
Author(s):  
Xin-Yu Zhang ◽  
Xiao-Qin Zha ◽  
Ling-Qing Gao ◽  
Peng-Hui Hei ◽  
Yong-Feng Ren

In the present study, the microstructures and properties of DSS 2205 solid wire MIG welded samples prepared in different shielding gases (pure Ar gas, 98%Ar + 2%O2 and 98%Ar + 2%N2) were investigated for improving the weldability of DSS 2205 welded joint. The work was conducted by mechanical property tests (hardness and tensile test) and corrosion resistance property tests (immersion and electrochemical tests). The results show that adding 2%O2 into pure Ar gas as the shielding gas decreases crystal defects (faults) and improves the mechanical properties and corrosion resistance of the welded joints. Phase equilibrium and microstructural homogeneity in welded seam (WS) and heat-affected zone (HAZ) can be adjusted and the strength and corrosion resistance of welded joints increased obviously by adding 2%N2 to pure Ar gas as the shielding gas. Compared with DSS 2205 solid wire MIG welding in 98%Ar + 2%O2 mixed atmosphere, the strength and corrosion resistance of welded joints are improved more obviously in 98%Ar + 2%N2 mixed atmosphere.


Sign in / Sign up

Export Citation Format

Share Document