Two Dimensional Ultrasonic Vibration Assisted Chemo-Mechanical Grinding of Si Wafer

2010 ◽  
Vol 126-128 ◽  
pp. 282-288
Author(s):  
Zhen Zhong Wang ◽  
Yong Bo Wu ◽  
Li Bo Zhou ◽  
Yin Biao Guo ◽  
Chen Xu Wu

As a new fixed-abrasive machining method, chemo-mechanical grinding (CMG) is developed from chemical mechanical polishing (CMP), with the obvious advantage of geometric accuracy determinacy and no slurry. To improve material removal rate and enhance the popularity of CMG, this paper introduces a combined grinding method, i.e., two dimensional ultrasonic vibration assisted CMG (2D-UACMG). Si wafer is taken as the workpiece and the influence of ultrasonic vibration modes and process parameters on the surface roughness and the material removal is examined. The results show 2D-UACMG can obtain better surface quality with little surface damage at nanometer level compared with the conventional CMG without the ultrasonic vibration.

2009 ◽  
Vol 416 ◽  
pp. 609-613
Author(s):  
Ming Li Zhao ◽  
Bo Zhao ◽  
Yu Qing Wang ◽  
Guo Fu Gao

Relative motion of single abrasive is analyzed for the different applied directions of longitudinal ultrasonic vibration, and its locus is simulated in the present paper. The research results show that the locus in two-dimensional ultrasonic vibration is only similar to that in y-direction, and both are close to sinusoid curves. The width of grooves scratched by abrasive grains y-direction (axial direction of grinding wheel) is two times of the vibration amplitude, and the material removal rate increases remarkably. In case of x-direction (tangential direction of grinding wheel) ultrasonic vibration, abrasive grains with periodic force impact material surface with high frequency vibration, which make material fracture removal easy. Therefore, the high efficiency essence of material removal in two-dimensional ultrasonic grinding is revealed in view of locus. In addition, according to the results of grinding experiments, under same conditions good surface quality can be obtained in two-dimensional ultrasonic grinding and material removal rate in common grinding is the lowest. Consequently it is further proved that the method of two-dimensional ultrasonic vibration grinding is an effective one for ceramic materials.


2012 ◽  
Vol 523-524 ◽  
pp. 155-160 ◽  
Author(s):  
Ya Guo Li ◽  
Yong Bo Wu ◽  
Li Bo Zhou ◽  
Hui Ru Guo ◽  
Jian Guo Cao ◽  
...  

Ultrasonic vibration assisted processing is well known for the improvement in machined surface quality and processing efficiency due to the reduced forces and tribology-generated heating when grinding hard-brittle materials. We transplanted this philosophy to chemo-mechanical fixed abrasive polishing of optical glass, namely fused silica, in an attempt to improve surface roughness and/or material removal rate. Experiments were conducted to elucidate the fundamental characteristics of chemo-mechanical fixed abrasive polishing of fused silica in the presence and absence of ultrasonic vibration on a setup with an in-house built gadget. The experimental results show that ultrasonic vibration assisted chemo-mechanical fixed abrasive polishing can yield increased material removal rate while maintaining the surface roughness of manufactured optics compared to conventional fixed abrasive polishing without ultrasonic vibration. The mechanism of material removal in fixed abrasive polishing was also delved. We found that the glass material is removed through the synergic effects of chemical and mechanical actions between abrasives and glass and the resultant grinding swarf contains ample Si element as well as Ce element, standing in stark contrast to the polisher that contains abundant Ce element and minor Si element.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Feng Jiao ◽  
Bo Zhao

Lapping is a key processing step for precision parts, which directly affects machining quality, precision, and efficiency. Due to some drawbacks of free-abrasive lapping such as deep scratches on the lapped surface, lower lapping efficiency for lower lapping speed, severe waste of abrasive, high-processing cost, and so on, conventional fixed-abrasive lapping (CFL) technology was proposed and developed recently. Meanwhile, considering the unique advantages of the ultrasonic-assisted machining during the processing of those hard and brittle materials and the effect of ultrasonic vibration on the self-sharpening characteristic of abrasive pellet, a novel ultrasonic-assisted fixed-abrasive lapping (UAFL) technology is put forward and corresponding lapping device for engineering ceramics cylindrical part is developed in this paper. Meanwhile, UAFL mechanism and characteristics were studied theoretically and experimentally. Research results show that superimposed ultrasonic vibration changes the lapping movement characteristics and material removal mechanism to a certain extent, helping to heighten material removal rate, smoothen the waveform of tangential force, reduce the average tangential force, and improve surface machining quality. UAFL can be regarded as a high efficiency and precision processing technology for engineering ceramics cylindrical part.


2008 ◽  
Vol 389-390 ◽  
pp. 289-294
Author(s):  
Manabu Iwai ◽  
Wen Qiu Wei ◽  
Shinichi Ninomiya ◽  
Sadao Sano ◽  
Tetsutaro Uematsu ◽  
...  

In order to realize electrochemical finishing in tap water, an ultrasonic vibration using a transducer enabling three kinds of vibration modes, i.e., axial, bending, and complex, was given to the electrode. During the test finishing, it was observed that with electrode without ultrasonic vibration, the workpiece surface was simply covered with the rust. On the contrary, by applying the ultrasonic vibration of bending vibration mode or complex vibration mode with an appropriate amplitude, the material removal rate was increased and the surface roughness was improved.


2007 ◽  
Vol 359-360 ◽  
pp. 431-435
Author(s):  
Guo Fu Gao ◽  
Bo Zhao ◽  
Qing Hua Kong ◽  
Chuan Shao Liu

Based on the machining pattern, mechanics of material removal and theory of micro-indentation, in previous studies the models of material removal rate of hard-brittle materials was discussed through the relatively influencing factors of machining parameters from various aspects, reflecting the research advances on mechanics of material removal of hard-brittle materials. However, those models of material removal rate have limitations, which results from impercipient theory of fracture of new kinks of materials, randomicity of practical machining process, inappropriate assumptions and simplification of the machining conditions and so on. In this work firstly, previous models of material removal rate of hard-brittle materials machining with ultrasonic assistance were reviewed briefly. Subsequently, the models of material removal rate of complex ceramics machining with two-dimensional ultrasonic vibration assistance were established based on fracture theory of micro- indentation in fracture regime and plastic removal mechanics in ductile regime respectively. The material removal rate is affected not only by the properties of material and machining parameters, but also by the character of grinding wheel and parameters of ultrasonic vibration.


2007 ◽  
Vol 329 ◽  
pp. 451-458 ◽  
Author(s):  
Yan Wu ◽  
A.G. Sun ◽  
Bo Zhao ◽  
Xun Sheng Zhu

Based on the single abrasive particle motion locus of elliptical spiral in two-dimensional ultrasonic vibration grinding (WTDUVG), the theoretical model representing the material removal rate are deduced and verified, and the reason of high efficiency material removal by applying two-dimensional ultrasonic vibration is analyzed. Finally, experimental researches on material removal rate of ceramics were carried out using coarse grit diamond wheel both with and without workpiece two-dimensional ultrasonic vibration assistance grinding. Experimental results indicated that (1) Material removal rate (MRR) in vibration grinding process is about 1.5 times as large as that of in conventional grinding, the experimental results are in good agreement with the calculated ones. (2)The material removal rate increases along with increases of the grinding depth and workpiece velocity both in with and without vibration grinding. (3)The vibration grinding surface had no spur and build-up edge and its surface roughness was smaller than CG significantly. Surface quality of WTDUVG is superior to that of conventional grinding, it is easy for ultrasonic vibration grinding that material removal mechanism is ductile regime grinding.


2016 ◽  
Vol 693 ◽  
pp. 780-787
Author(s):  
Jun Li ◽  
Y.K. Tang ◽  
Y.W. Zhu ◽  
Y. L. Sun ◽  
Dun Wen Zuo

Fixed abrasive technology which has many advantages is one of the future machining directions. Free and fixed abrasive lapping of BK7 glass was investigated and different material removal modes and surface damage categories by lapping were discussed. The results show that material removal rate is larger for free abrasive lapping than that of fixed abrasive lapping with four abrasive sizes and decreases with diamond size decreasing in two lapping processes. Surface quality is better for fixed abrasive lapping than that of free abrasive lapping at the same diamond size and gets better with the decreasing of diamond size. Fixed abrasive lapping can achieve simultaneously high MRR and good surface quality.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


1994 ◽  
Vol 116 (3) ◽  
pp. 423-429 ◽  
Author(s):  
J. C. Wang ◽  
S. M. Hsu

Ceramics are hard and brittle. Machining such materials is time-consuming, difficult, and expensive. Current machining technology requires stiff machine, high hardness tools, and small material removal rates to minimize surface damage. This study demonstrates the feasibility of a novel ceramic machining concept that utilizes chemical reactions at the tool-workpiece interface to reduce the stress and minimize the surface damage. A series of cutting tests using a diamond wheel on silicon nitride with different chemical compounds has been performed. The results demonstrate that by using different chemistries, the material removal rate and the surface finish of the machined ceramic can be significantly altered. Some halogenated hydrocarbons show a significant improvement over some commercial machining fluids currently in use.


2010 ◽  
Vol 431-432 ◽  
pp. 17-20 ◽  
Author(s):  
Yong Wei Zhu ◽  
Jun Li ◽  
Jun Wang ◽  
Kui Lin

The swelling ratio and the pencil hardness of pad were introduced to evaluate the properties of hydrophilic fixed abrasive (FA) pad. The effect of pad composition on its swelling ratio and pencil hardness was studied. Results show that the swelling ratio increases with the rise of content of Trimethylopropane Triacrylate (TMPTA) and Urethane Acrylate (PUA) and the pad gets harder while there is more TMPTA and less PUA. Results also show that a low swelling ratio corresponds to a high material removal rate (MRR), and a low wet pencil hardness to a low surface roughness in each group.


Sign in / Sign up

Export Citation Format

Share Document