Forming Limit of Holed Dome in Two-Stage Stretch Forming

2010 ◽  
Vol 146-147 ◽  
pp. 844-847 ◽  
Author(s):  
Atsushi Hirahara ◽  
Ryutaro Hino ◽  
Fusahito Yoshida

This paper deals with the accurate prediction of forming limit of a dome with a circular hole in two-stage stretch forming. Since this two-stage forming is a process of non-proportional deformation, a fracture criterion, which is capable to predict fracture limit of sheet metal under non-proportional strain path, is introduced. The limit dome height of steel blank is predicted by utilizing numerical optimization technique, in which the fracture criterion is used as a constraint function to avoid sheet breakage. The calculated result and the corresponding experimental result show that the fracture criterion can successfully predict the limit dome height in the two-stage forming while the classical forming limit diagram (FLD) overestimates it.

Author(s):  
S. Basak ◽  
S. K. Panda ◽  
Y. N. Zhou

Accurate prediction of the formability in multistage forming process is very challenging due to the dynamic shift of limiting strain during the different stages depending on the tooling geometry and selection of the process parameters. Hence, in the present work, a mathematical framework is proposed for the estimation of stress based and polar effective plastic strain-forming limit diagram (σ- and PEPS-FLD) using the Barlat-89 anisotropic plasticity theory in conjunction with three different hardening laws such as Hollomon, Swift, and modified Voce equation. Two-stage stretch forming setup had been designed and fabricated to first prestrain in an in-plane stretch forming setup, and, subsequently, limiting dome height (LDH) testing was carried out on the prestrained blanks in the second stage to evaluate the formability. The finite element (FE) analysis of these two-stage forming process was carried out in ls-dyna for automotive grade dual-phase (DP) and interstitial-free (IF) steels, and the σ-FLD and PEPS-FLD were used as damage model to predict failure. The predicted forming behaviors, such as LDH, thinning development, and the load progression, were validated with the experimental results. It was found that the LDH in the second stage decreased with increase in the prestrain amount, and both the σ-FLD and PEPS-FLD could be able to predict the formability considering the deformation histories in the present multistage forming process with complex strain path.


2020 ◽  
Vol 846 ◽  
pp. 139-145
Author(s):  
Shinichi Nishida ◽  
Daichi Uematsu ◽  
Naoki Ikeda ◽  
Kyohei Ogawa ◽  
Makoto Hagiwara ◽  
...  

This paper describes finite element method analysis (FEM analysis), results of burring processing of large diameter steel pipe and fracture criterion in burring process of large diameter steel pipe. In this study, the pipe is the 150A SGP pipe with a diameter of 165.2 mm and a wall thickness of 5 mm. The pipe is used for a plant as a flow channel of gas and liquid. A burring process of pipe is generally for forming the branch. The burring process is achieved by drawing of die from prepared hole. And the branch pipe is welded to the formed pipe. This process has some problem. One is the forming limit of pipe, and the other is needed to machining the end surface to be welded. Therefore, in this study, the forming limit of SGP pipe was estimated by FEM analysis of burring process. The parameters used for criteria for forming limit are the maximum shear stress and the equivalent strain. As a result of comparing the analysis result and the experimental result, the forming limit of the 150A SGP pipe was estimated that the maximum shear stress is 350 MPa and the equivalent strain is around 0.8.


Author(s):  
Behrouz Bagheri ◽  
Mahmoud Abbasi ◽  
Reza Hamzeloo

A tailor welded blank (TWB) includes two or more blanks joined together in order to make a single blank. Different welding methods are used to join blanks with different characteristics and form TWBs. In this study, a comparison is made among the effects of three different welding methods namely CO2 laser welding, friction stir welding (FSW), and friction stir vibration welding (FSVW) on mechanical and formability properties of developed TWBs. AA6061 alloy sheets with different thicknesses (1.2 and 0.8 mm) are joined to get TWBs. The forming limit diagram (FLD) and limiting dome height (LDH) are applied to assess the formability. The Taguchi method is applied to find the optimum values of welding parameters. It is concluded that TWBs made by FSVW have higher mechanical properties and formability compared to TWBs made by FSW and CO2 laser welding. The results also indicate that FLD for TWBs made by FSW is higher than FLD for TWBs made by CO2 laser welding and FLD0, for TWBs made by FSVW, increases as vibration frequency increases.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ji-Yeon Shim ◽  
Bong-Yong Kang

Electrohydraulic forming (EHF), high-velocity forming technology, can improve the formability of a workpiece. Accordingly, this process can help engineers create products with sharper edges, allowing a product’s radius of curvature to be less than 2 mm radius of curvature. As a forming process with a high-strain rate, the EHF process produces a shockwave and pressure during the discharge of an electrical spark between electrodes, leading to high-velocity impact between the workpiece and die. Therefore, the objective of this research is to develop an EHF process for forming a lightweight materials case with sharp edges. In order to do so, we employed A5052-H32, which has been widely used in the electric appliance industry. After drawing an A5052-H32 Forming Limit Diagram (FLD) via a standard limiting dome height (LDH) test, improvements to the formability via the EHF process were evaluated by comparing the strain between the LDH test and the EHF process. From results of the combined formability, it is confirmed that the formability was improved nearly twofold, and a sharp edge with less than 2 mm radius of curvature was created using the EHF process.


Author(s):  
Shuhui Li ◽  
Ji He ◽  
Z. Cedric Xia ◽  
Danielle Zeng ◽  
Bo Hou

A bifurcation analysis of forming limits for an orthotropic sheet metal is presented in this paper. The approach extends Stören and Rice's (S–R) bifurcation analysis for isotropic materials, with materials following a vertex theory of plasticity at the onset of localized necking. The sheet orthotropy is represented by the Hill’48 yield criterion with three r-values in the rolling (r0), the transverse (r90) and the diagonal direction (r45). The emphasis of the study is on the examination of r-value effect on the sheet metal forming limit, expressed as a combination of the average r-value raverage and the planar anisotropy (Δr). Forming limits under both zero extension assumption and minimum extension assumption as well as necking band orientation evolution are investigated in detail. The comparison between the experimental result and predicted forming limit diagram (FLD) is presented to validate the extended bifurcation analysis. The r-value effect is observed under uniaxial and equal-biaxial loadings. However, no difference is found under plane strain condition in strain-based FLD which is consistent with Hill's theory. The force maximum criterion is also used to analyze FLD for verification.


Author(s):  
Sumit Moondra ◽  
Aaron Sakash ◽  
Brad Kinsey

Determining tearing concerns in numerical simulations of sheet metal components is difficult since the traditional failure criterion is strain-based and exhibits strain path dependence. Recently, a stress-based, as opposed to a strain-based, failure criterion has been proposed and demonstrated both analytically for sheet materials (Arrieux, 1987 and Stoughton, 2001) and experimentally for tube hydroforming (Kuwabara et al., 2003). The next steps in this progression to acceptance of a stress-based forming limit diagram is to demonstrate how this failure criterion can be used to predict failure of sheet metal parts in numerical simulations. In this paper, numerical simulation results for dome height testing specimens are presented and compared to experimental data from Graf and Hosford (1993). Reasonable agreement was obtained comparing the failure predicted from numerical simulations and those found experimentally.


Author(s):  
M Jie ◽  
C H Cheng ◽  
C L Chow ◽  
L C Chan

Forming limits of stainless steel tailor-welded blanks (TWBs) are investigated through both testing and numerical simulation. Limit dome height (LDH) tests were performed for 1.2/1.0 mm TWBs with 0°, 90°, 45° weldment orientations and various blank widths. Numerical simulation of the LDH test was conducted with LSDYNA. Since TWB is, in reality, a structure, the forming limits of TWBs in terms of the LDH and failure location should be characterized rather than the conventional forming limit diagrams (FLDs). A localized necking criterion based on the vertex theory was employed to identify the failure sites of TWBs. The localized necking criterion was compiled into a computer program, which processed the output data from LSDYNA. The LDHs and failure locations were computed for various combinations of blank thickness and weldment orientation. The predicted LDH and failure locations were compared with the test results and found to be satisfactory.


2015 ◽  
Vol 830-831 ◽  
pp. 238-241 ◽  
Author(s):  
K.Sajun Prasad ◽  
Sushanta Kumar Panda ◽  
Sujoy Kumar Kar ◽  
S.V.S. Narayana Murty ◽  
S.C. Sharma

The forming limit diagram (ε-FLD) was estimated by deforming IN-718 sheet metal in different strain paths using a sub-size limiting dome height test set-up. The bending strains induced due to the use of smaller punch were estimated in all the strain paths, and the corrected ε-FLD was evaluated. The mathematical models such as Hill localized necking, Swift diffuse necking and Storen-Rice bifurcation theories were implemented to predict the limiting strains. In-order to avoid the path dependency of the ε-FLD during multi-stage forming process, stress based forming limit diagram (σ-FLD) was estimated using von-Mises and Hill-48 anisotropy plasticity theory with incorporation of Hollomon power hardening law. It was found that the bending strain influenced the limiting strains and stresses in the forming limit diagram. However, IN-718 material has encouraging formability in stretch forming process. The plot of the equivalent strains versus triaxiality indicated increasing limiting strain of the material in tension-tension mode.


Sign in / Sign up

Export Citation Format

Share Document