The Influence of Strain on Semi-Solid Behavior in AC4C Aluminum Alloy Billet by One Way Torsion Working

2006 ◽  
Vol 15-17 ◽  
pp. 35-40
Author(s):  
Norihisa Sugie ◽  
Mitsuaki Furui ◽  
Hiroshi Anada

This study was investigated about that behavior of α phase during recrystallization process and the influence of the amount of strain on semi-solid structure of AC4C aluminum alloy which was processed by one way torsion working. AC4C aluminum alloy billets having a diameter of 35mm and a length of 400mm were torsioned by a single side torsion machine. The maximum strain (γmax) of the specimens in this experiment was 0.88. The specimens were etched for the microstructure observation by optical microscope. The casting material (γ=0) and the torsion material (γ=0.73) were remained dendrite structure from room temperature to 565°C. The casting materials had grain-shaped structure when they reached to 585°C which is an eutectic temperature in this alloy. However the torsion working material had it when they reached to 577°C from eutectic temperature on down. In semi-solid region, the structure of the torsion working material was finer than that of casting material and became a more grain-shaped structure. The casting material which was heated to the eutectic temperature was changed to dendrite structure again. However the torsion working material was remained grain-shaped structure.

2020 ◽  
Vol 326 ◽  
pp. 05001
Author(s):  
Vasiliy Yashin ◽  
Alexander Drits ◽  
Evgenii Aryshenskii ◽  
Ilya Latushkin ◽  
Ekaterina Chitnaeva

The present study addresses recrystallization process in Al-Mg-Mn-Zn-Zr system alloy samples. The samples are collected from cast ingot, produced by casting to industrial DC mold, and homogenized based on standard industrial practice. After that the samples were rolled with different hot rolling schedules. Rolled samples were annealed at different temperatures and their resultant microstructure was examined using optical microscope. During the study new grains nuclei generation rate and their growth rate were determined, analytical records, describing recrystallization kinetics, were obtained, main differences, specific to this alloy recrystallization in 350 ºС-450 ºС temperature range, were identified.


2016 ◽  
Vol 850 ◽  
pp. 219-225
Author(s):  
Yan Hong Jing ◽  
Hong Xing Lu ◽  
Da Quan Li ◽  
Qiang Zhu

In the present investigation a batch of impellers made of 319S aluminum alloy with about 300 pieces and produced by semi-solid thixocasting process were subjected the ultrasonic testing (UT). The experimental results revealed that the equivalent size of the defects in the impellers was not more than φ0.4mm FBH+12dB. And there were two main types of defects in 12 mm depth area from the machined surface, where defect was apt to form. One type was single defect and the other was intensive defect. Moreover, other nondestructive testing (NDT) was used to test some impellers containing typical defect, and the result suggests that UT was more sensitive than x-ray testing. The defects existed in the impellers were investigated by Optical Microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS). The observation showed that the both types of defects existed in eutectic zone. The single defect derived from billet and the intensive defect came from die casting process.


2014 ◽  
Vol 575 ◽  
pp. 83-87
Author(s):  
Muhammad Husna Al Hasa ◽  
Masrukan ◽  
Arief Sasongko Adhi

This research aims to develop an aluminum alloy suitable for applications in the nuclear industry, particularly in terms of its hardness. A synthesized AlFeNiMg alloy plate was subjected to deformation in a gradual rolling process at room temperature. A Vickers hardness tester and an optical microscope were employed to analyze the hardness and to observe the microstructure of the aluminum alloy consecutively. Analyses of elements and phase structures were performed by EDS-SEM and X-ray diffraction. The result shows that the hardness of AlFeNiMg alloy increases along with the increase in rolling deformation. The alloy hardness increases from 88 HV to 113 HV, 135 HV, 153 HV and 165 HV at percent cold reduction of 30%, 53%, 65% and 88% consecutively. From the microstructure observation, the grains tend to get more elongated along with increasing rolling deformation. The pattern analysis of X-ray diffraction shows that there are two phases, namely α and θ (FeAl3).


2010 ◽  
Vol 33 ◽  
pp. 1-5
Author(s):  
Shi Kun Xie ◽  
Rong Xi Yi ◽  
Xiu Yan Guo ◽  
Xiao Liang Pan ◽  
Xiao Qiu Zheng

In semi-solid remelting process, the various stages of reheating temperature and isothermal holding time must be accurately controlled in order to obtain the uniformly distributed and small equiaxed grains microstructure. In this paper, a temperature control program was developed and the remelting process for Al-7Si-2RE aluminum alloy was carried out. The results showed that with the raise of reheating temperature and the extension of isothermal holding time, the liquid fraction increases, α-phase grain grows and becomes rounding in the process of Al-7Si-2RE alloy semi-solid remelting. The most reasonable process parameter of reheating temperature is at 585~590°C and its appropriate isothermal holding time are about 10~15min for the semi-solid Al-7Si-2RE alloy.


2014 ◽  
Vol 936 ◽  
pp. 1791-1795 ◽  
Author(s):  
Rui Wang ◽  
Hui Zhu ◽  
Heng Hua Zhang

Technology and defect in the low-pressure semi-solid die casting of aluminum wheel hub under different process has been studied. The simulation software ADSTEFAN 2012 is used to analyze the solidification in different die temperature. Stereomicroscope, digital camera and optical microscope (OM) are used to study defect in the casting. The result shows that the low slurry temperature (606°C) will result in higher viscosity, and the low preheated die temperature will increase the cooling rate so that shrinkage is formed in the isolate solidification area. In the technology of casting wheels, the optimum temperature of the slurry is 614°C, preheated temperature of die is 400°C.


2006 ◽  
Vol 510-511 ◽  
pp. 782-785 ◽  
Author(s):  
Suk Won Kang ◽  
Ki Bae Kim ◽  
Dock Young Lee ◽  
Jung-Hwa Mun ◽  
Eui Pak Yoon

2010 ◽  
Vol 20 ◽  
pp. s744-s748 ◽  
Author(s):  
Zhen-yu WANG ◽  
Ze-sheng JI ◽  
Li-xin SUN ◽  
Hong-yu XU
Keyword(s):  

2021 ◽  
pp. 130756
Author(s):  
Yan Liu ◽  
Xiaolin Chen ◽  
Minqiang Gao ◽  
Renguo Guan

2008 ◽  
Vol 141-143 ◽  
pp. 163-168 ◽  
Author(s):  
Xiang Jie Yang ◽  
Hong Min Guo

Rheo-die casting (RDC) based on LSPSF (low superheat pouring with a shear field) rheocasting process has been exploited. In case of secondary die casting aluminum alloy YL112, LSPSF allowed for preparation of sound semi-solid slurry in 15-20s that fully meet the production rate of HPDC, the primary α-Al exhibiting a mean equivalent diameter of 70 μm and shape factor of 0.93, without any entrapped eutectic. Compared to conventional HPDC, RDC improves microstructures in castings. Secondary solidification of semi-solid slurry takes place uniformly throughout the entire cavity, producing an extremely fine and uniform microstructure. The experimental results show the RDC 380 alloy has much improved integrity and mechanical properties, particularly elongation, and heat treatment can be used to enhance the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document