Ionic Conduction Performance of Solid Electrolyte Materials

2010 ◽  
Vol 156-157 ◽  
pp. 799-802
Author(s):  
Ming Zhou ◽  
Yan Wen Tian

This experiment composes irreversible cells using ultrafine electrolyte materials and platinum slices, to measure the ionic conductivity the cells at normal temperatures with the help of impedance 1286 spectroscopy. We have calculated the ionic conductivities, which indicate that the ionic conductivities of the merchant LaF3 polycrystalline powder and the powder by microwave method are higher than the ones of LaF3 crystal and the powder by Sol-Gel method, to achieve 10-6 Scm-1, so, they are better ionic conductors at normal temperature and can be used as sensor base materials. The experimental data show that O- participates in ionic conduction.

2010 ◽  
Vol 663-665 ◽  
pp. 678-681
Author(s):  
Ming Zhou ◽  
Yan Wen Tian

With the help of impedance spectroscopy, the complex impedances of three kinds of ultrafine LaF3 polycrystalline powders (industrial grade LaF3 polycrystalline powder, ultrafine LaF3 polycrystalline powder prepared with sol-gel technique, and ultrafine LaF3 polycrystalline powder prepared with microwave method) were measured, and their ionic conductivities were derived. It is found that the ionic conductivities of the industrial grade LaF3 polycrystalline powder and the ultrafine LaF3 polycrystalline powder prepared with microwave method are higher than that of the ultrafine LaF3 polycrystalline powder prepared with sol-gel technique.


2018 ◽  
Vol 281 ◽  
pp. 774-781
Author(s):  
Ke Shan ◽  
Feng Rui Zhai ◽  
Nan Li ◽  
Zhong Zhou Yi

A single phase perovskite, YxSr1−xTi0.6Fe0.4O3-δ(x=0.06-0.09), was fabricated at 1350°C in air by sol-gel method. The effects of Y-and Fe-doping into SrTiO3on phase structure, electrical conductivity, ionic conductivity and its impedance behavior were investigated. The optimized Y0.07Sr0.93Fe0.4Ti0.6O3-δsample exhibits an electrical conductivity of 0.135 S·cm-1at 800 °C. Y-doping decreases the migration energy for oxygen ions, leading to a significant increase in ionic conductivity. The ionic conductivity of Y0.09Sr0.91Ti0.6Fe0.4O3-δsample varies from 0.0052 S· cm-1at 600°C to 0.02 S·cm-1at 800°C. Impedance characteristics over a wide frequency range of 0.01Hz-100 KHz reveal that the resistance of ionic conduction is predominantly influenced by grain boundary, the relaxation time of which decreases with increase of Y-doping amount.


Author(s):  
R. B. Queenan ◽  
P. K. Davies

Na ß“-alumina (Na1.67Mg67Al10.33O17) is a non-stoichiometric sodium aluminate which exhibits fast ionic conduction of the Na+ ions in two dimensions. The Na+ ions can be exchanged with a variety of mono-, di-, and trivalent cations. The resulting exchanged materials also show high ionic conductivities.Considerable interest in the Na+-Nd3+-ß“-aluminas has been generated as a result of the recent observation of lasing in the pulsed and cw modes. A recent TEM investigation on a 100% exchanged Nd ß“-alumina sample found evidence for the intergrowth of two different structure types. Microdiffraction revealed an ordered phase coexisting with an apparently disordered phase, in which the cations are completely randomized in two dimensions. If an order-disorder transition is present then the cooling rates would be expected to affect the microstructures of these materials which may in turn affect the optical properties. The purpose of this work was to investigate the affect of thermal treatments upon the micro-structural and optical properties of these materials.


2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


Inorganics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Xiaoxuan Luo ◽  
Aditya Rawal ◽  
Kondo-Francois Aguey-Zinsou

Nanoconfinement is an effective strategy to tune the properties of the metal hydrides. It has been extensively employed to modify the ionic conductivity of LiBH4 as an electrolyte for Li-ion batteries. However, the approach does not seem to be applicable to other borohydrides such as NaBH4, which is found to reach a limited improvement in ionic conductivity of 10−7 S cm−1 at 115 °C upon nanoconfinement in Mobil Composition of Matter No. 41 (MCM-41) instead of 10−8 S cm−1. In comparison, introducing large cage anions in the form of Na2B12H12 naturally formed upon the nanoconfinement of NaBH4 was found to be more effective in leading to higher ionic conductivities of 10−4 S cm−1 at 110 °C.


Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6661-6667 ◽  
Author(s):  
S. Amaresh ◽  
K. Karthikeyan ◽  
K. J. Kim ◽  
Y. G. Lee ◽  
Y. S. Lee

The ionic conductivity of a Li–Al–Ge–P–S based thio-LISICON solid electrolyte is equivalent to that of a conventional organic liquid electrolyte used in lithium secondary batteries. The usage of aluminum brings down the cost of the solid electrolyte making it suitable for commercial solid state batteries.


2020 ◽  
Author(s):  
Joshua Tuffnell ◽  
Jędrzej K. Morzy ◽  
Rui Tan ◽  
Qilei Song ◽  
Caterina Ducati ◽  
...  

IL@MOF (IL: ionic liquid; MOF: metal-organic framework) materials have been proposed as a candidate for solid-state electrolytes, combining the inherent non-flammability and high thermal and chemical stability of the ionic liquid with the host-guest interactions of the MOF. In this work, we compare the structure and ionic conductivity of a sodium ion containing IL@MOF composite formed from a microcrystalline powder of the zeolitic imidazolate framework (ZIF), ZIF-8 with a hierarchically porous sample of ZIF-8 containing both micro- and mesopores from a sol-gel synthesis. Although the crystallographic structures were shown to be the same by X-ray diffraction, significant differences in particle size, packing and morphology were identified by electron microscopy techniques which highlight the origins of the hierarchical porosity. After incorporation of Na0.1EMIM0.9TFSI (abbreviated to NaIL; EMIM = 1-ethyl-3-methylimidazolium; TFSI = bis(trifluoromethylsulfonyl)imide), the hierarchically porous composite exhibited a 40 % greater filling capacity than the purely microporous sample which was confirmed by elemental analysis and digestive proton NMR. Finally, the ionic conductivity properties of the composite materials were probed by electrochemical impedance spectroscopy. The results showed that despite the 40 % increased loading of NaIL in the NaIL@ZIF-8micro sample, the ionic conductivities at 25 °C were 8.4x10-6 and 1.6x10-5 S cm-1 for NaIL@ZIF-8meso and NaIL@ZIF-8micro respectively. These results exemplify the importance of the long range, continuous ion pathways contributed by the microcrystalline pores, as well as the detrimental effect of discontinuous and tortuous mesoporous pathways which show a limited contribution to the overall ionic conductivity. <br>


1990 ◽  
Vol 210 ◽  
Author(s):  
P. Dzwonkowski ◽  
M. Eddrief ◽  
C. Julien ◽  
M. Balkanski

AbstractThin films of vitreous solid electrolyte in the boron-oxide/lithium oxide system have been grown using a thermal evaporation technique. Solid electrolyte films of composition B2O3-xLi2O with 0.5≤x≤5 are obtained from a mixture of lithium metaborate and lithium oxide in good proportion. Structure and ionic conduction are studied as a function of the glass modifier concentration and process conditions. The structure is investigated by the mid-infrared absorption spectroscopyof films deposited on a silicon wafer. Comparison with bulk materials whose structures are known shows that the films have a similar structure, and exhibit the transformation of boroxol rings into triborate or di-triborate units as the Li2O concentration increases. The ionic conductivity has been studied over wide frequency and temperatureranges using the complex impedance spectroscopy in a sandwiched geometry. The ionic conductivity increases with increasing Li content and exhibits a maximum value for B2O3-3Li2O.


2011 ◽  
Vol 335-336 ◽  
pp. 172-175
Author(s):  
Yuan Shan Han ◽  
Qin Zhang ◽  
San Feng Fang ◽  
Chang Zhen Wang

LaF3 powder is prepared by means of three methods . The traditional precipitation of LaC13 with HF action, sol-gel of La (CH3COO) 3 with NH4F action then gel is handled by infrared furnace and microwave method of La (CO3)3 as La source with NH4F action to become LaF3 Ultra-fine powder under the action of microwave. Through the SEM photographs, it can be revealed that the powder particles are different. Precipitation particles diameter is 10 μm; sol-gel method of particle is 1 um and there are a lot of needle-like particles; microwave particles is 100nm.


2019 ◽  
Vol 91 (11) ◽  
pp. 1797-1806
Author(s):  
Masaru Aniya

Abstract The properties of the materials are intimately related to the nature of the chemical bond. Research to explain the peculiarities of superionic materials by focusing on the bonding character of the materials is presented. In particular, a brief review of some fundamental aspects of superionic conductors is given based on the talk presented at “Solid State Chemistry 2018, Pardubice” in addition to some new results related to the subject. Specifically, the topics on bond fluctuation model of ionic conductors, the role of medium range structure in the ionic conductivity, bonding aspects of non-Arrhenius ionic conductivity and elastic properties of ionic conductors are discussed. Key concepts that are gained from these studies is stressed, such as the importance of the coexistence of different types of bonding, and the role of medium range structure in glasses for efficient ionic transport in solids. These concepts could help the development of new materials.


Sign in / Sign up

Export Citation Format

Share Document