Multi-Criteria Fuzzy Optimization Model of Open-Sea Oil Terminal's Layout

2010 ◽  
Vol 168-170 ◽  
pp. 2663-2667
Author(s):  
Guo Lei Tang ◽  
Xiang Qun Song ◽  
Wen Yuan Wang ◽  
Zi Jian Guo

The open-sea terminals are in bad natural conditions which cause mooring line failure and sudden vessel movement. Such an accident can lead to costly damage to cargo handling equipment or other nearby vessels and structures, oil pollution. Therefore, this paper proposes a multi-criteria fuzzy optimization model of open-sea oil terminal's layout. The model is to improve port operations and safety by considering line tensions and theirs non-uniformity coefficients, and vessel motions as criteria. Finally, its application of optimizing the layout of open-sea oil terminal is also given, and the results show that the proposed model is applicable in structural optimization.

2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Xuejie Bai

This paper addresses a supplier selection problem in which a buyer procures multiple products from multiple suppliers under disruption risk. The problem is formulated as a new credibility-based biobjective fuzzy optimization model. In the proposed model, cost, capacity, and demand are characterized by fuzzy variables with known possibility distributions. The objectives of our model are to maximize the total quality of purchased products and minimize the expected total cost. Two credibility constraints are used to guarantee that the chance about the supplier capacity and buyer demand can satisfy the predetermined levels. The main concern in solving the optimization model is to calculate the expected value of the objective function and the credibility in the constraints. When the key parameters are mutually independent triangular fuzzy variables, the expected cost objective and credibility constraints can be transformed into their equivalent forms. Taking advantage of the structural characteristics of the equivalent model, the goal programming method is employed to solve the supplier selection model, which can be solved by conventional optimization method. At last, some numerical experiments have been performed to illustrate the effectiveness of the proposed model and solution strategy.


2021 ◽  
Vol 9 (2) ◽  
pp. 152
Author(s):  
Edwar Lujan ◽  
Edmundo Vergara ◽  
Jose Rodriguez-Melquiades ◽  
Miguel Jiménez-Carrión ◽  
Carlos Sabino-Escobar ◽  
...  

This work introduces a fuzzy optimization model, which solves in an integrated way the berth allocation problem (BAP) and the quay crane allocation problem (QCAP). The problem is solved for multiple quays, considering vessels’ imprecise arrival times. The model optimizes the use of the quays. The BAP + QCAP, is a NP-hard (Non-deterministic polynomial-time hardness) combinatorial optimization problem, where the decision to assign available quays for each vessel adds more complexity. The imprecise vessel arrival times and the decision variables—berth and departure times—are represented by triangular fuzzy numbers. The model obtains a robust berthing plan that supports early and late arrivals and also assigns cranes to each berth vessel. The model was implemented in the CPLEX solver (IBM ILOG CPLEX Optimization Studio); obtaining in a short time an optimal solution for very small instances. For medium instances, an undefined behavior was found, where a solution (optimal or not) may be found. For large instances, no solutions were found during the assigned processing time (60 min). Although the model was applied for n = 2 quays, it can be adapted to “n” quays. For medium and large instances, the model must be solved with metaheuristics.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Li Wang ◽  
Yong Qin ◽  
Jie Xu ◽  
Limin Jia

A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.


Author(s):  
José Alfredo Ramírez Monares ◽  
Jesús Israel Hernández Hernández

The static analysis of the indeterminate three-bar structure is developed using the Castigliano's first theorem, taking the lengths and inclination angles as variables. Some reductions are applied in the resulting set of equations to approximate them to the references models. From now on, the minimum mass optimization model with restrictions is established. Then, the Optimality Criterion linear resizing optimization rule algorithm for the unbounded and bounded design variables is applied in two numerical cases. The analytical and Matlab Optimization Toolbox results are also obtained and they demonstrate the Optimality Criterion linear resizing rule effectiveness in structural optimization with a minimum mass objective and size restrictions.


2021 ◽  
Vol 27 (2) ◽  
pp. 493-510
Author(s):  
Samaneh Zolfaghari ◽  
Seyed Meysam Mousavi ◽  
Jurgita Antuchevičienė

This paper presents a new optimization model and a new interval type-2 fuzzy solution approach for project portfolio selection and scheduling (PPSS) problem, in which split of projects and re-execution are allowable. Afterward, the approach is realized as a multi-objective optimization that maximizes total benefits of projects concerning economic concepts by considering the interest rate and time value of money and minimizes the tardiness value and total number of interruptions of chosen projects. Besides, budget and resources limitation, newfound relations are proposed to consider dependency relationships via a synergy among projects to solve PPSS problem hiring interval type-2 fuzzy sets. For validation of the model, numerical instances are provided and solved by a new extended procedure based on fuzzy optimistic and pessimistic viewpoints regarding several situations. In the end, their results are studied. The results show that it is more beneficial when projects are allowed to be split.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Qingyou Yan ◽  
Qian Zhang ◽  
Xin Zou

The study of traditional resource leveling problem aims at minimizing the resource usage fluctuations and obtaining sustainable resource supplement, which is accomplished by adjusting noncritical activities within their start and finish time. However, there exist limitations in terms of the traditional resource leveling problem based on the fixed project duration. This paper assumes that the duration can be changed in a certain range and then analyzes the relationship between the scarce resource usage fluctuations and project cost. This paper proposes an optimization model for the multiresource leveling problem. We take into consideration five kinds of cost: the extra hire cost when the resource demand is greater than the resource available amount, the idle cost of resource when the resource available amount is greater than the resource demand, the indirect cost related to the duration, the liquidated damages when the project duration is extended, and the incentive fee when the project duration is reduced. The optimal objective of this model is to minimize the sum of the aforementioned five kinds of cost. Finally, a case study is examined to highlight the characteristic of the proposed model at the end of this paper.


2018 ◽  
Vol 24 (3) ◽  
pp. 539-547 ◽  
Author(s):  
Zefeng Xiao ◽  
Yongqiang Yang ◽  
Di Wang ◽  
Changhui Song ◽  
Yuchao Bai

Purpose This paper aims to summarize design rules based on the process characteristics of selective laser melting (SLM) and structural optimization and apply the design rules in the lightweight design of an aluminum alloy antenna bracket. The design goal is to reduce 30 per cent of the weight while maintaining the stress levels in the original part. Design/methodology/approach To reduce weight as much as possible, the titanium alloy with higher specific strength was selected during the process of optimization. The material distribution of the bracket was improved by the topology optimization design. The redesign for SLM was used to obtain an optimization model, which was more suitable for SLM. The component performance was improved by shape optimization. The modal analysis data of the structural optimization model were compared with those of the stochastic lightweight model to verify the structural optimization model. The scanning data were compared with those of the original model to verify whether the model was suitable for SLM. Findings Structural optimization design for antenna bracket realized the mass decrease of 30.43 per cent and the fundamental frequency increase of 50.18 per cent. The modal analysis data of the stochastic lightweight model and the structural optimization model indicated that the optimization performance of structural optimization method was better than that of the stochastic lightweight method. The comparison results between the scanning data of the forming part and the original data confirmed that the structural optimization design for SLM lightweight component could achieve the desired forming accuracy. Originality/value This paper summarizes geometric constraints in SLM and derives design rules of structural optimization based on the process characteristics of SLM. SLM design rules make structural optimization design more reasonable. The combination of structural optimization design and SLM can improve the performance of lightweight antenna bracket significantly.


Sign in / Sign up

Export Citation Format

Share Document