Design and Application of Special Slop Retaining

2010 ◽  
Vol 168-170 ◽  
pp. 652-657
Author(s):  
Li Ping Wen ◽  
Su Li Wang ◽  
Xu Ping Zhu

Taking the design of composite soil-nailing in deep foundation pit in complex surroundings for example, the paper discusses numerical analysis of soil-nailing using FLAC, a general analysis program of geotechnical engineering, used to predict the displacement and interior force in soil-nailing. Furthermore, a comparison about the interior force in soil nails between the numerical analysis and the traditional methods is made. The measurements show that the numerical analysis is more accurate than traditional methods. The conclusion is drawn that by contrast with the deficiency of traditional methods, more satisfactory results can be got from numerical analysis on composite soil-nailing using the program of FLAC.

2012 ◽  
Vol 174-177 ◽  
pp. 2020-2023 ◽  
Author(s):  
Bing Wang

Based on a typical projects, the horizontal displacement in depth, horizontal displacement and vertical subsidence of pile top, and settlements of surrounding buildings are monitored with the process on digging of deep foundation pit. The study on digging process of foundation pit is analyzed by using finite element software. Using mapped meshing method, from mixing the pile near the semi-circular area (radius = 50m), the meshing appropriate encryption in order to improve the accuracy of the external semi-circular area (radius = 65m) mesh is less appropriate sparse.Layer by layer to kill the layers of the soil unit and activate the soil nails (spring element), the simulated excavation and synchronization of soil nails construction.Verify the arc form of failure surface in side of deep foundation pit in soft soil area. Which is valuable for reference to similar structure engineering of foundation pit.


2014 ◽  
Vol 1030-1032 ◽  
pp. 714-718
Author(s):  
Hui Tao

The paper introduces the application of prestressed anchors and soil nails support system in complex soil layer deep foundation pit engineering at Lanzhou region based on the deep foundation pit engineering in Gansu Provincial Hospital of TCM as the background and discusses its key technology. The effect shows that scheme of the design of foundation pit support engineering is reasonable and effective.The engineering meets requirements of design and environment.The monitoring results show that prestressed anchors can control the horizontal displacement and the change rate of slope′s vertical settlement effectively. The experience of engineering is significance for similar engineerings at Lanzhou region.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 252 ◽  
Author(s):  
Wei Han ◽  
Genxiao Li ◽  
Zhaohui Sun ◽  
Hengjie Luan ◽  
Chuanzheng Liu ◽  
...  

In special geology conditions such as silt-soil, foundation pits are prone to instability and severe deformation. In this paper, a composite soil nailing structure was studied and its effect on a silt-soil symmetrical foundation pit investigated. The factors affecting the stability of the pit as well as its deformation characteristics were also explored. The results show that excavation depth of the foundation pit has a significant impact on its stability. The soil outside the foundation pit is in the form of a parabola, and the uplift of the soil mainly occurs at the bottom. The horizontal displacement of soil on the side wall of the foundation pit presents a “bulk belly” form. In addition, the axial force of soil nails is larger in the middle part, and smaller at both ends in the shape of a spindle. Moreover, the horizontal displacement is positively correlated with the inclination and spacing of the soil nails, but negatively correlated with the diameter and depth of the mixing pile inlay. Furthermore, the inclination and spacing of the soil nails, the diameter, and embedded depth of the mixing pile have their own critical values for stability of the foundation pit. Specifically, in this paper, with respect to soil nails, inclination should be below 30° and prestress value should not exceed 20 kN. With respect to the mixing pile, the diameter should be less than 1.5 m; when the embedded depth of the mixing pile exceeds the critical depth, the limiting effect of the mixing pile on horizontal displacement is not significant. This research provides important takeaways for the design of a composite soil nailing structure for symmetrical foundation pits.


2021 ◽  
Vol 719 (3) ◽  
pp. 032051
Author(s):  
Xiaoyi Jiang ◽  
Qingrui Lu ◽  
Xiaopeng Chen ◽  
Jinling Liu ◽  
Ping Li

2012 ◽  
Vol 256-259 ◽  
pp. 198-202
Author(s):  
Kai Yu Jiang ◽  
Jing Cao ◽  
Yue Ma

Based on the background of a foundation pit slope of the tertiary strong weathered basalt(TSWB), a quantitative analysis of the slope stability is proposed by combination of the limit equilibrium and the numerical analysis. The analysis also considers the effects of the natural state and soaking state Then, as an example, an ultra-deep foundation pit slope (UFPS) is analyzed under the background of TSWB. The Janbu method is used in the limit equilibrium because it can meet all the equilibrium conditions, including the force and moment equilibrium equation. The Lagrangian difference method which based on shear strength reduction is adopted in numerical analysis. Some meaningful conclusions can be obtained through comparing analysis the calculation results of Janbu method with finite difference method. These conclusions can be given a reference to similar projects.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Zhihe Cheng ◽  
Yousheng Deng

Based on the characteristics of moso bamboo including high short-term strength, stable performance, and ability to provide temporary support for shallow foundation pits in soft soil, the stress characteristics and supporting effects of the ecological composite supporting system have been explored through model tests and numerical calculation analysis of the moso bamboo micropile-composite soil nailing structure. The results showed that the bamboo pile can effectively control the horizontal deformation of the side wall of the foundation pit and the ground surface settlement, achieving a relatively satisfactory supporting effect. Furthermore, the bamboo pile has visibly bent in middle and lower parts, where the regional shear point is most likely to appear, the axial force of the soil nail is distributed in an oval pattern with a smaller force on both sides and a larger force in the middle part, the maximum axial strain is 447.3 με, and the axial force of the soil nails in each row follows a similar trend. The synergy of piles and soil nails can delay the formation of the slip surface, therefore enhancing the overall bearing capacity of the foundation pit. These results can shed light on the support mechanism and engineering design of bamboo piles in shallow soft soil foundation pits.


Sign in / Sign up

Export Citation Format

Share Document