scholarly journals Bearing Characteristics of Moso Bamboo Micropile-Composite Soil Nailing System in Soft Soil Areas

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Zhihe Cheng ◽  
Yousheng Deng

Based on the characteristics of moso bamboo including high short-term strength, stable performance, and ability to provide temporary support for shallow foundation pits in soft soil, the stress characteristics and supporting effects of the ecological composite supporting system have been explored through model tests and numerical calculation analysis of the moso bamboo micropile-composite soil nailing structure. The results showed that the bamboo pile can effectively control the horizontal deformation of the side wall of the foundation pit and the ground surface settlement, achieving a relatively satisfactory supporting effect. Furthermore, the bamboo pile has visibly bent in middle and lower parts, where the regional shear point is most likely to appear, the axial force of the soil nail is distributed in an oval pattern with a smaller force on both sides and a larger force in the middle part, the maximum axial strain is 447.3 με, and the axial force of the soil nails in each row follows a similar trend. The synergy of piles and soil nails can delay the formation of the slip surface, therefore enhancing the overall bearing capacity of the foundation pit. These results can shed light on the support mechanism and engineering design of bamboo piles in shallow soft soil foundation pits.

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 252 ◽  
Author(s):  
Wei Han ◽  
Genxiao Li ◽  
Zhaohui Sun ◽  
Hengjie Luan ◽  
Chuanzheng Liu ◽  
...  

In special geology conditions such as silt-soil, foundation pits are prone to instability and severe deformation. In this paper, a composite soil nailing structure was studied and its effect on a silt-soil symmetrical foundation pit investigated. The factors affecting the stability of the pit as well as its deformation characteristics were also explored. The results show that excavation depth of the foundation pit has a significant impact on its stability. The soil outside the foundation pit is in the form of a parabola, and the uplift of the soil mainly occurs at the bottom. The horizontal displacement of soil on the side wall of the foundation pit presents a “bulk belly” form. In addition, the axial force of soil nails is larger in the middle part, and smaller at both ends in the shape of a spindle. Moreover, the horizontal displacement is positively correlated with the inclination and spacing of the soil nails, but negatively correlated with the diameter and depth of the mixing pile inlay. Furthermore, the inclination and spacing of the soil nails, the diameter, and embedded depth of the mixing pile have their own critical values for stability of the foundation pit. Specifically, in this paper, with respect to soil nails, inclination should be below 30° and prestress value should not exceed 20 kN. With respect to the mixing pile, the diameter should be less than 1.5 m; when the embedded depth of the mixing pile exceeds the critical depth, the limiting effect of the mixing pile on horizontal displacement is not significant. This research provides important takeaways for the design of a composite soil nailing structure for symmetrical foundation pits.


2013 ◽  
Vol 405-408 ◽  
pp. 182-186 ◽  
Author(s):  
Yan Lin Zhao ◽  
Hao Bin Zhang ◽  
Qing Pan Zhu ◽  
Dong Chen

For studying the mechanism of the composite soil nailing, this paper applies FLAC-3D to simulate pure soil nailing, soil nailing-soil anchor, soil nailing-micro pile-soil anchor. The analytical results as follows: (1)Because of the anchoring of the anchor, the axial tension of soil nailing in each row is much smaller than the one in the pure soil nailing supporting, and the tension of soil nailing which are closed to soil anchor decreases obviously. (2)The extrusion action of prestressed anchor makes the potential slip surface backward shifts and the sliding radius increases, which is better for the stability of foundation pit side (3)Micro-pile increases the strength of the soil in a certain range and improves the initial stress field before the excavation. (4)The inner force of the whole soil nailing and the prestress anchor declines but the drop is not large after the establishment of the micro-pile support in advance. (5)Prestressed anchor and micropile play a very important role in controlling the deformation of foundation pit.


2010 ◽  
Vol 168-170 ◽  
pp. 652-657
Author(s):  
Li Ping Wen ◽  
Su Li Wang ◽  
Xu Ping Zhu

Taking the design of composite soil-nailing in deep foundation pit in complex surroundings for example, the paper discusses numerical analysis of soil-nailing using FLAC, a general analysis program of geotechnical engineering, used to predict the displacement and interior force in soil-nailing. Furthermore, a comparison about the interior force in soil nails between the numerical analysis and the traditional methods is made. The measurements show that the numerical analysis is more accurate than traditional methods. The conclusion is drawn that by contrast with the deficiency of traditional methods, more satisfactory results can be got from numerical analysis on composite soil-nailing using the program of FLAC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yousheng Deng ◽  
Zhihe Cheng ◽  
Mengzhen Cai ◽  
Yani Sun ◽  
Chengpu Peng

Bamboo is highly renewable and biodegradable with good short-term strength, which meets the requirement for temporal support structures in shallow foundation pits. Based on this, we conducted a laboratory model test on the dentate bamboo micropile support structure combined with environmentally friendly building materials and new type of piles, to explore the stress characteristics, stress change regularity, and the support effect of the system in soft soil foundation pits. The results show that the earth pressure on the pile sides above the excavation surface gradually decreases with an increase in the excavation depth. The bending deformation of the bamboo pile was also significant. The results also show that the earth pressure and the pile strain below the excavation surface change slightly during the excavation process. When the short sides of the foundation pit were loaded, the highest strain was recorded in the piles 4 and 11. A maximum strain of 358.93 με was recorded, and the maximum displacement of the pile in the top part was obtained to be only 2.14 mm. The most subsidence of dentate pile obtained is only 1.88 mm, whereas that of the single-row pile is 2.35 mm. Compared to the traditional single-row pile, the dentate piles can effectively reduce the horizontal deformation as well as the surface subsidence effectively. They can also support more external lateral load, and hence maintain the foundation stability and give better support. The results provide a theoretical basis for ecological bamboo support technology and have great value to be promoted.


2011 ◽  
Vol 243-249 ◽  
pp. 2266-2270
Author(s):  
Guang Zhu Zhou ◽  
Xu Wei ◽  
Chen Yu

As a new type of building envelope, Gcrw is mainly used for excavation of foundation pit. It can stand by itself without the help of bracing, especially in soft soil area. Its stressed characteristic hasn’t been known yet. By using advanced big finite element software Abaqus/Cae, a simulation was made on model of Gcrw under soil pressure when a foundation pit is dug, while the whole excavation is divided into three continuous independent excavation stages. The result shows that Gcrw is a rather good building envelope, Gcrw and soil in the gridding form an integral earth-retaining structure and keep balance under soil pressure before or behind the structure, and have little displacement in horizontal direction. It is like a gravity-type retaining wall in its entirety, but takes on an elastic characteristic. The soil pressure presents a linear change, but its value is less than the theoretical value of calculation. The front wall of Gcrw, like a sheet, is the main flexural construction element, which is subjected to the pressure from side wall of foundation pit and produce curve deformation. The back wall of Gcrw has little displacement and almost is built in the clay. The partition wall endures the effect of the tensile force, its horizontal deformation increases with the build-in depth’s increasing. The back wall and the partition wall play a very important role in dragging back the front wall, the role of them is similar to a pair of anchor tie. The soil in the gridding not only provides soil pressure, but also can fix the back wall, so it is seen as a part of Gcrw and in favor of the Gcrw’s anti-overturn.


2012 ◽  
Vol 174-177 ◽  
pp. 2020-2023 ◽  
Author(s):  
Bing Wang

Based on a typical projects, the horizontal displacement in depth, horizontal displacement and vertical subsidence of pile top, and settlements of surrounding buildings are monitored with the process on digging of deep foundation pit. The study on digging process of foundation pit is analyzed by using finite element software. Using mapped meshing method, from mixing the pile near the semi-circular area (radius = 50m), the meshing appropriate encryption in order to improve the accuracy of the external semi-circular area (radius = 65m) mesh is less appropriate sparse.Layer by layer to kill the layers of the soil unit and activate the soil nails (spring element), the simulated excavation and synchronization of soil nails construction.Verify the arc form of failure surface in side of deep foundation pit in soft soil area. Which is valuable for reference to similar structure engineering of foundation pit.


2013 ◽  
Vol 353-356 ◽  
pp. 11-15
Author(s):  
Deng Qun Wang ◽  
Yan Peng Zhu

Finite element software was employed to establish a model to simulate the compound soil nailing. The model simulates the process of constructing prestressed compound soil nailing. Compared the condition prestressed with no prestress, analyzed the Impact of prestress anchor on the deformation in the process of construction and the effect on axial force of soil nail. Applying prestress is able to control the horizontal displacement obviously, but has not obvious effect on vertical displacement, especially place the anchor bolt at the lower part of the slope. In the process of construction, prestress has an advance effect on the deformation of foundation pit and the axial force of soil nails near the anchor bolt.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Honggui Di ◽  
Huiji Guo ◽  
Shunhua Zhou ◽  
Jinming Chen ◽  
Lu Wen

This study presents a comparative analysis of the deformation control effect of the hydraulic servo steel struts and ordinary steel struts of a foundation pit based on the measured axial force of the steel struts, lateral wall deflection, and ground surface settlement due to pit excavation. The results indicate that ordinary steel struts installed via axial preloading exhibit a disadvantageous axial force loss with a maximum value equal to 86.7% of the axial preloading force. When compared with ordinary steel struts, the hydraulic servo steel strut exhibits a superior supporting effect. The hydraulic servo steel strut adjusts the axial force in real time based on the deformation of the retaining structure and the axial force of the struts. Thus, the ratio of maximum lateral deflection to the excavation depth of a deep foundation pit in soft soil is less than 0.3%. Concrete struts undergo unsupported exposure during the excavation process, leading to sharply increasing deformation of the retaining structure. Therefore, regarding a foundation pit with strict requirements for deformation control, the use of hydraulic servo steel struts rather than concrete struts is recommended.


2010 ◽  
Vol 168-170 ◽  
pp. 2481-2487
Author(s):  
Yan Lin Zhao ◽  
Wei Guang An

Based on the limit equilibrium theory and the circular slip surface method, the state equation of limit equilibrium and the calculation model of the most dangerous sliding surface for inner global stability of foundation pit supported by the prestressed anchor composite soil nailing is established with the disturbing force method. And the searching and solving method of the most dangerous sliding surface is optimized with the SLP optimization method and the simplex optimization method. Then with the mechanical parameters of soil as random variables, the reliability index of inner global stability of foundation pit is calculated with the design checking point method. Finally, a practical project is used to analyze the sensitivity of the reliability index to the coefficients of variability of all random variables.


2014 ◽  
Vol 1065-1069 ◽  
pp. 48-52
Author(s):  
Shu Long Zhang ◽  
Fen Ting Lu

Abstract. The horizontal displacement of soil in slope and the change law of ground surface settlement are dynamically analyzed by building three dimensional-model of foundation pit with the finite element software, ABAQUS, to simulate the construction process of excavation and support, to figure out the influence of micro pile and waterproof curtain on composite soil nailing wall. The study indicates that mechanical model of soil nailing, waterproof curtain, micro pile, pre-stressed anchor interacting with soil can better simulate the construction process of composite soil nailing wall support and have higher calculation accuracy. The calculation can provide a reference for the design and construction of composite soil nailing wall.


Sign in / Sign up

Export Citation Format

Share Document