Synchronization of Fractional-Order Chaotic Systems with Uncertain Parameters

2010 ◽  
Vol 171-172 ◽  
pp. 723-727
Author(s):  
Hong Zhang ◽  
Qiu Mei Pu

For the synchronization of fractional-order chaotic systems with uncertain parameters, a controller based on sliding mode theory is presented. Based on the stability theory of fractional-order system, stability of the proposed method is analyzed. The theory is successfully applied to synchronize fractional Newton-Leipnik chaotic systems with uncertain parameters. The simulation results show the effectiveness of the proposed controller.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.


2012 ◽  
Vol 424-425 ◽  
pp. 318-323
Author(s):  
Hong Zhang ◽  
Dao Yin Qiu

This work investigates chaos synchronization between two different fractional-order hyperchaotic system (FOHS)s with uncertain parameters. The Chen FOHS is controlled to be synchronized with a new FOHS. The analytical conditions for the synchronization of different FOHSs are derived by utilizing the stability theory of fractional-order system. Furthermore, synchronization between two different FOHSs is achieved by utilizing sliding mode control method in a quite short period and both remain in chaotic states. Numerical simulations are used to verify the theoretical analysis using different values of the fractional-order parameter


2014 ◽  
Vol 926-930 ◽  
pp. 3046-3049
Author(s):  
Jin Ping Jia ◽  
Fan Di Zhang

This paper investigated hybrid projective synchronization of fractional order hyperchaotic systems with different orders. Based on the idea of active control and the stability theory of linear fractional-order system, we design the effective controller to realize the hybrid projective synchronization. Numerical simulation results which are carried show that the method is easy to implement and reliable for synchronizing the two nonlinear fractional order hyperchaotic systems while it also allows both the systems to remain in hyperchaotic states.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Author(s):  
Samir Ladaci ◽  
Karima Rabah ◽  
Mohamed Lashab

This chapter investigates a new control design methodology for the synchronization of fractional-order Arneodo chaotic systems using a fractional-order sliding mode control configuration. This class of nonlinear fractional-order systems shows a chaotic behavior for a set of model parameters. The stability analysis of the proposed fractional-order sliding mode control law is performed by means of the Lyapunov stability theory. Simulation examples on fractional-order Arneodo chaotic systems synchronization are provided in presence of disturbances and noises. These results illustrate the effectiveness and robustness of this control design approach.


2021 ◽  
pp. 289-297
Author(s):  
Zhaohan zhang, Huiling Jin

This paper studies the synchronization control of fractional order chaotic systems based on memristor and its hardware implementation. This paper takes the complex dynamic phenomena of memristor turbidity system as the research background. Starting with the integer order memristor system, the fractional order form is derived based on the integer order turbid system, and its dynamics is deeply studied. At the same time, the turbidity phenomenon is applied to the watermark encryption algorithm, which effectively improves the confidentiality of the algorithm. Finally, in order to suppress the occurrence of turbidity, a fractional order sliding mode controller is proposed. In this paper, the sliding mode controller under the function switching control method is established, and the conditions for the parameters of the sliding mode controller are derived. Finally, the experimental results analyze the stability of the controlled system under different parameters, and give the corresponding time-domain waveform to verify the correctness of the theoretical analysis.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250088 ◽  
Author(s):  
YONG XU ◽  
RENCAI GU ◽  
HUIQING ZHANG ◽  
DONGXI LI

This paper aims to investigate the phenomenon of Diffusionless Lorenz system with fractional-order. We discuss the stability of equilibrium points of the fractional-order system theoretically, and analyze the chaotic behaviors and typical bifurcations numerically. We find rich dynamics in fractional-order Diffusionless Lorenz system with appropriate fractional order and system parameters. Besides, the control problem of fractional-order Diffusionless Lorenz system is examined using feedback control technique, and simulation results show the effectiveness of the method.


2011 ◽  
Vol 25 (09) ◽  
pp. 1283-1292 ◽  
Author(s):  
MING-JUN WANG ◽  
XING-YUAN WANG

In the paper, generalized chaotic synchronization of a class of fractional order systems is studied. Based on the stability theory of linear fractional order systems, a generalized synchronization scheme is presented, and theoretical analysis is provided to verify its feasibility. The proposed method can realize generalized synchronization not only of fractional order systems with same dimension, but also of systems with different dimensions. Besides, the function relation of generalized synchronization can be linear or nonlinear. Numerical simulations show the effectiveness of the scheme.


Author(s):  
Naeimadeen Noghredani ◽  
Saeed Balochian

Abstract Fractional-order chaotic unified systems include a variety of fractional-order chaotic systems such as Chen, Lorenz, Lu, Liu, and financial systems. This paper describes a sliding mode controller for synchronisation of fractional-order chaotic unified systems in the presence of uncertainties and external disturbances, and affirms the stability of the controller (which is composed of error dynamics). Moreover, the synchronisation of two separate fractional-order chaotic systems is studied. For this aim, fractional integral sliding surface is defined. Then the sliding mode control rule for stability of error dynamic is presented based on the Lyapunov stability theorem. Simulation results, obtained by using MATLAB, show that the proposed sliding mode has employed an appropriate approach against uncertainties and to reduce the chattering phenomenon that often occurs with sliding mode controllers.


2013 ◽  
Vol 850-851 ◽  
pp. 868-871 ◽  
Author(s):  
Li Xin Yang ◽  
Wan Sheng He ◽  
Jin Ping Jia ◽  
Fan Di Zhang

In this paper, chaos synchronization of the modified Sprott E system is investigated. Based on the stability theorem for fractional systems, tracking control approach is used for the fractional-order systems with uncertain parameters. Meanwhile, suitable adaptive synchronization controller and recognizing rules of the uncertain parameters are designed. Numerical simulation results show that the method is easy to implement and reliable for synchronizing the two nonlinear fractional order hyper-chaotic systems.


Sign in / Sign up

Export Citation Format

Share Document