The Temperature Influence on the Sauce Wastewater Treatment

2011 ◽  
Vol 183-185 ◽  
pp. 1114-1117
Author(s):  
Jin Long Zuo ◽  
Zhi Wei Zhao

Nowadays the sauce wastewater is doing greater harm to the water environment in China. In order to tackle this problem, the temperature influence on the sauce wastewater treatment effect was investigated. The results showed that when the temperature is 22~32°C the ammonia nitrogen removal effect was good and the ammonia nitrogen removal rate could reach more than 90%. The temperature had no obvious influence on nitrate for sauce wastewater. When the temperature is 22~32°C, the effluent orthophosphate concentration could reach about 1mg/L and the removal efficiency could reach about 70% with aeration time 2.5 h. Thus the sauce wastewater removal effect could be influenced by the temperature.

2011 ◽  
Vol 183-185 ◽  
pp. 278-281
Author(s):  
Zhi Xiao Liu ◽  
Jin Long Zuo

With rapid development of food industry, the production of soybean sauce is increasing in recent years. The sauce wastewater is doing greater and greater harm to the water environment. In order to tackle this problem, the operation time on the sauce wastewater treatment were investigated. The results showed that the process has a better effect for ammonia nitrogen, the orthophosphate and COD removal. The effluent ammonia nitrogen was less than 5mg/L and the ammonia nitrogen removal efficiency could reach about 90% with the aeration time 2 h-3.5 h. The orthophosphate increased during the anoxic stage while decreased during the aerobic stage. At the end of the aerobic stage, the orthophosphate concentration and the COD could reach about 1mg/L and 21 mg/L respectively when aeration time was 2 h-3.5 h. The better operation time (the aeration time) was at 2 h-3.5 h and the system could get a good water quality for sauce wastewater treatment.


2011 ◽  
Vol 183-185 ◽  
pp. 1200-1203
Author(s):  
Jun Sheng Li ◽  
Zhi Wei Zhao ◽  
Jin Long Zuo

The effect s of aeration time on the treatment of brewery wastewater in SBR reactor were investigated by using synthetic brewery wastewater. The experimental result indicates that under the condition of influent COD is 300~650mg/L, the temperature is 25°C, continual aerations is 2.5 h and sludge density is 2000~3000 mg/L, the reactor has a good degeneration ability of COD and NH4+-N in simulation brewery wastewater,removal rate can reached 90 % or more,phosphate removal efficiency was above 70%. so the SBR technology is feasible.


2020 ◽  
Vol 34 (3) ◽  
pp. 193-207
Author(s):  
Wen Zhang ◽  
Zhen Zhang ◽  
Sufeng Wang

How to simplify the nitrogen removal process, reduce the cost and improve the efficiency has become an urgent problem to be solved. In this research, the isolated HNAD (heterotrophic nitrification and aerobic denitrification) bacteria were used to remove<br /> the nitrogen in wastewater. Modified absorbent stone was used as high-efficiency and<br /> low-cost immobilized material. The modification effect was determined by the changes<br /> in mechanical strength, Zeta potential, pore structure, micrographs and biomass. The<br /> practicability of the modified carrier was further proved by experiments of environmental effect and reuse. The modified carrier had excellent performance. By comparing the<br /> degradation effects of immobilized microorganism and free microorganism, it was proved<br /> that the immobilized microorganisms have broad application prospects and strong adaptability to environmental factors. Under the optimum conditions (temperature of 30 oC,<br /> pH of 7, dissolved oxygen of 3.5 mg L–1), the removal efficiency of ammonia nitrogen<br /> reached 100 % in 40 hours, the removal efficiency of total nitrogen reached 60.11 % in<br /> 50 hours, and the removal rate of total nitrogen was 2.404 mg-NL–1 h–1 by immobilized<br /> microorganisms with the treatment of simulated nitrogen-containing wastewater. This<br /> research provides new material for the immobilization of HN-AD bacteria and a new way for nitrogen removal.


2012 ◽  
Vol 518-523 ◽  
pp. 473-477
Author(s):  
Xia Zhao ◽  
Hui Xia Feng ◽  
Feng Jiang ◽  
Na Li Chen ◽  
Xiao Chun Wang

In sequencing batch reactor aerobic granular sludge was cultivated, and the influence of influent C/N ratio to aerobic granular sludge was studied. The results showed that the granulation and the settling ability of the sludge were poor in high C/N, however, low C/N was beneficial to the accumulation of microorganism in reactor and MLSS could reach to as high as 8740 mg/L. Lower C/N ratio would lead to increase of particle size and disintegrate of loose structure and overgrowth on filamentous microbe, these were disadvantage of the stability of the system. It was not obvious that influent C/N ratio affected on the organic removal. The COD removal maintained at 87% after the preliminary form particles were formed in reactor. When C/N ratio was 100:15~100:35, the phosphorus removal efficiency was good. If C/N ratio was too high or too low, the formation of sludge granulation would be affected in the process. The influence of C/N ratio to ammonia nitrogen removal efficiency was obvious. While C/N ratio was 100:10, granular sludge had good simultaneous nitrification and denitrification performance, and the average removal of ammonia nitrogen attained to 91%. But low C/N ratio was able to inhibit the activity of nitrifying bacteria and denitrifying bacteria. At that time, ammonia nitrogen removal rate declined sharply in the system.


2011 ◽  
Vol 183-185 ◽  
pp. 255-258
Author(s):  
Jin Long Zuo

With rapid development of sauce industry, the production of the sauce is increasing in recent years. The sauce wastewater is doing greater harm to the water environment in China. In order to tackle this problem, the influent COD concentration influence on nitrogen variation of sauce wastewater was investigated. The results showed that the influent COD has a different effect for ammonia nitrogen, nitrite and nitrate. When the influent COD concentration was 600mg/L, 500mg and 300mg/L respectively, the effluent ammonia nitrogen was at 4.3mg/L, 1.8mg/L and 1.0mg/L. And the ammonia nitrogen removal efficiency was more than 90%. Meanwhile the nitrate and nitrite accumulated steadily with the same variation tendency.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2014 ◽  
Vol 703 ◽  
pp. 171-174
Author(s):  
Bing Wang ◽  
Yi Xiao ◽  
Shou Hui Tong ◽  
Lan Fang ◽  
Da Hai You ◽  
...  

Improved step-feed de-nitrification progress combined with biological fluidized bed was introduced in this study. The progress had good performance and capacity of de-nitrification and organic matter. The experiment result showed that the de-nitrification efficiency of the improved biological fluidized bed with step-feed process was higher than the fluidized bed A/O process under the same water quality and the operating conditions. When the influent proportion of each segment was equal, the system showed good nitrogen removal efficiency with the change of influent C/N ratio, HRT and sludge return ratio. The removal rate of TN reached up to 88.2%. It showed that the simultaneous nitrification and de-nitrification phenomenon happened in the aerobic zone. The nitrogen removal mechanism was also studied.


1994 ◽  
Vol 30 (12) ◽  
pp. 297-306 ◽  
Author(s):  
Joseph Akunna ◽  
Claude Bizeau ◽  
René Moletta ◽  
Nicolas Bernet ◽  
Alain Héduit

Two laboratory upflow aerobic and anaerobic filters fed with synthetic wastewaters were used to study firstly the effects of aeration rate on the nitrification of anaerobically pre-treated effluents and secondly the effects of recycle-to-influent ratios on methane production rate, denitrification and nitrification performances of a combined aerobic and anaerobic wastewater treatment process. Nitrification of anaerobically pre-treated effluent was accompanied by aerobic post-treatment for residual COD removal. A comparison of nitrification performances using autotrophic medium and anaerobically pre-treated effluents (containing 1203 mg COD 1−1) with the same ammonia nitrogen concentration of about 300 mg NH4-N 1−1 showed that 3% of added ammonia nitrogen was assimilated by autotrophic nitrifiers during nitrification of the autotrophic medium while up to 30% was assimilated by both nitrifiers and heterotrophs during organic carbon removal and nitrification of anaerobically pre-treated effluent. Furthermore, it was suspected that significant nitrogen loss through denitrification occured in the aerobic filter especially at low aeration rates. In the study of the combined aerobic-anaerobic system, maximum ammonia nitrogen removal of 70% through denitrification was obtained at recycle-to-influent ratios of 4 and 5. COD removal efficiency in the anaerobic filter decreased from 77 to 60% for recycle-to-influent ratios of zero to 5. Overall COD removal efficiency of the entire system was constant at about 99% due to heterotrophic COD removal in the aerobic filter.


2019 ◽  
Vol 38 (3) ◽  
pp. 243
Author(s):  
Happy Mulyani ◽  
Gregorius Prima Indra Budianto ◽  
Margono Margono ◽  
Mujtahid Kaavessina

Industrial wastewater treatment using Sequencing Batch Reactor (SBR) can improve effluent quality at lower cost than that obtained by other biological treatment methods. Further optimization is still required to enhance effluent quality until it meets standard quality and to reduce the operating cost of treatment of high strength organic wastewater. The purpose of this research was to determine the effect of pretreatment (pH adjustment and prechlorination) and aeration time on effluent quality and COD removal rate in tapioca wastewater treatment using SBR. Pretreatment was done by (1) adjustment of tapioca wastewater pH to control (4.92), 7, and 8, and (2) tapioca wastewater prechlorination at pH 8 during hour using calcium hypochlorite in variation dosages 0, 2, 4, 6 mg/L Cl2, SBR operation was conducted according to following steps: (1) Filling of pre-treated wastewater into a bioreactor during 1 hour, and (2) aeration of the mixture of tapioca wastewater and activated sludge during 8 hours. Effluent sample was collected at every 2-hours aeration for COD analysis. COD removal rate mathematical formula was got by first deriving the best fit function between aeration time and COD. Optimum aeration time resulting in no COD removal rate. The value of COD effluent and its removal rate in optimum aeration time was used to determine the recommended of operation condition of pretreatment. Research result shows that chosen pH operation condition is pH 8. Prechorination can make effluent quality which meets standard quality and highest COD removal rate. The chosen Cl2 dosage is 6 mg/L.


Sign in / Sign up

Export Citation Format

Share Document