Study on Electron Beam Curing of APTES Functionalized MWNTs/ Epoxy Composites

2011 ◽  
Vol 194-196 ◽  
pp. 1607-1610
Author(s):  
Yan Yan Lu ◽  
Hua Li ◽  
He Zhou Liu

In this study, we prepared the 3-aminopropyltriethoxysilane (APTES) functionalized MWNTs/epoxy composites by electron beam (EB) irradiation process. The modified MWNTs were characterized with SEM-EDS and FTIR. The gel content and conversion rate of epoxide groups of the EB cured pure epoxy resin and the APTES functionalized MWNTs/epoxy composites were measured and discussed. And the mechanical properties of the EB cured composites were also characterized. With addition of 0.25wt% APTES functionalized MWNTs, the Vicker’s hardness of the EB cured composite increased 100.02% compared with pure epoxy.

2011 ◽  
Vol 688 ◽  
pp. 69-73
Author(s):  
Yan Yan Lu ◽  
Hua Li ◽  
He Zhou Liu

Electron beam (EB) has been used in curing of polymers in view of its advantages over conventional curing processes including short curing time, lower thermal stress, reduction of hazardous chemical volatiles, higher production flexibility. Carbon nanotubes have been recognized as promising filler that can be used to change the mechanical, thermal and electrical properties of the polymer matrix composites. In this paper, EB curing of epoxide modified multi-walled carbon nanotubes (MWNTs)/epoxy composite has been investigated, and a bisphenol-A epoxy resin was used as matrix. MWNTs were chemical functionalized with epoxide monomer and the epoxide functionalized MWNTs were characterized by TG and FTIR. The gel content and Vicker’s hardness of the EB cured pure epoxy resin and the epoxide functionalized MWNTs/epoxy composites were measured and discussed as function of the concentration of the functionalized MWNTs. With the addition of epoxide modified MWNTs, both the gel content and Vicker’s hardness of the composites showed enhancement compared with EB cured pure epoxy.


2017 ◽  
Vol 24 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Varun Mittal ◽  
Shishir Sinha

AbstractThe aim of this research was to study the feasibility of using wheat straw fiber with epoxy resin for developing natural fiber-polymer composites. For this purpose, the epoxy resin was reinforced with 5, 10, 15, 20, and 25 wt.% of the wheat straw fiber with the help of the hand lay-up technique. Further, in order to improve the composite characteristic, wheat straw fibers were treated with three different concentrations of alkali (1%, 3%, and 5%). The mechanical and water absorption properties of the treated fiber composites were characterized and compared with those of untreated fiber-filled epoxy composites. It was observed that the mechanical properties and water resistance were reduced with the increase in wheat straw fiber loading from 5 to 25 wt.%. Among the three levels of alkali treatment, the composite made with 3% alkali-treated fiber exhibited superior mechanical properties than the other untreated and treated fiber composites, which pointed to an efficient fiber-matrix adhesion. The scanning electron microscope was used to observe the surface features of the wheat straw fiber.


2011 ◽  
Vol 287-290 ◽  
pp. 197-200
Author(s):  
Hai Qing Hu ◽  
Li Zhao ◽  
Jia Qiang Liu ◽  
Shi Bao Wen ◽  
Yong Jiang Gu ◽  
...  

Carbon fiber powder (CFP) instead of the traditional glass fiber (cloth) was used to reinforce epoxy resin for rapid tooling. There are two obvious advantages: one is to utilize the waste materials, which is good for the protection of the environment; another is to simplify the producing process by cast molding. The filling amount and dispersing process of CFP was studied in this paper. The results show that when the amount of CFP was 10 wt%, and the ultrasonic time is more than 15 min, the CFP can be dispersed in the epoxy matrix uniformly, and the mechanical properties can meet the requirement of epoxy molding.


2006 ◽  
Vol 006 (2) ◽  
pp. 284-288 ◽  
Author(s):  
Zuoguang ZHANG ◽  
Yubin LI ◽  
Yan WU ◽  
Zhijie SUN

2020 ◽  
Vol 16 ◽  
Author(s):  
Nadia A. Ali ◽  
Alaa M. Abd-Elnaiem ◽  
Seenaa I. Hussein ◽  
Asmaa Sh. Khalil ◽  
Hatem R. Alamri ◽  
...  

Objective: In this work, graphene (Gr) or/and Cu particles are used to improve the thermal and mechanical properties of epoxy resin. Methods: Various contents of Gr powder (0.1, 0.3, and 0.5 wt%), Cu powder (10, 30, and 50 wt%) were loaded to epoxy to form Gr/epoxy and Cu/epoxy composites, respectively. In addition, hybrids epoxy/Cu/Gr samples were prepared with a selection of lowest (0.1 and 10) and highest (0.5 and 50) ratios of Gr, and Cu, respectively. Results: The thermal conductivity increases with the increasing weight ratio of Gr and Cu as compared to the pure epoxy. The Thermogravimetric analysis (TGA) of epoxy composites and hybrid composites reveals an improvement in the thermal stability. In addition, the mechanical properties such as hardness shore D and the wear resistance are enhanced for both the epoxy composites and hybrids composites. However, the Ep+0.5wt%Gr+50wt%Cu hybrid composite has the maximum hardness 84, thermal conductivity of 3.84 W/m.K, it shows the lowest wear resistance 2.7×10-6 mm3/Nm at loading 10 N. Conclusion: The hybrid composite containing 0.5wt%Gr and 50wt%Cu shows the maximum hardness and thermal conductivity, as well as the lowest wear resistance when compared to other composites. The physical properties of the hybrid composite can be controlled by the host blend, and hence the morphology, and interfacial characteristics.


2005 ◽  
Vol 39 (16) ◽  
pp. 1433-1447 ◽  
Author(s):  
Rahul Ribeiro ◽  
Roger J. Morgan ◽  
Leila Bonnaud ◽  
Jim Lu ◽  
Hung-Jue Sue ◽  
...  

Author(s):  
Delmo A. Nishitsuji ◽  
Gerson Marinucci ◽  
Maria C. Evora ◽  
Leonardo G. de Andrade e Silva

2003 ◽  
Vol 47 (3) ◽  
pp. 250-256 ◽  
Author(s):  
Soo-Jin Park ◽  
Gun-Young Heo ◽  
Jae-Rock Lee ◽  
Dong Hack Suh

Sign in / Sign up

Export Citation Format

Share Document