Thermal and Mechanical Properties of Epoxy Resin Functionalized Copper and Graphene Hybrids using In-situ Polymerization Method

2020 ◽  
Vol 16 ◽  
Author(s):  
Nadia A. Ali ◽  
Alaa M. Abd-Elnaiem ◽  
Seenaa I. Hussein ◽  
Asmaa Sh. Khalil ◽  
Hatem R. Alamri ◽  
...  

Objective: In this work, graphene (Gr) or/and Cu particles are used to improve the thermal and mechanical properties of epoxy resin. Methods: Various contents of Gr powder (0.1, 0.3, and 0.5 wt%), Cu powder (10, 30, and 50 wt%) were loaded to epoxy to form Gr/epoxy and Cu/epoxy composites, respectively. In addition, hybrids epoxy/Cu/Gr samples were prepared with a selection of lowest (0.1 and 10) and highest (0.5 and 50) ratios of Gr, and Cu, respectively. Results: The thermal conductivity increases with the increasing weight ratio of Gr and Cu as compared to the pure epoxy. The Thermogravimetric analysis (TGA) of epoxy composites and hybrid composites reveals an improvement in the thermal stability. In addition, the mechanical properties such as hardness shore D and the wear resistance are enhanced for both the epoxy composites and hybrids composites. However, the Ep+0.5wt%Gr+50wt%Cu hybrid composite has the maximum hardness 84, thermal conductivity of 3.84 W/m.K, it shows the lowest wear resistance 2.7×10-6 mm3/Nm at loading 10 N. Conclusion: The hybrid composite containing 0.5wt%Gr and 50wt%Cu shows the maximum hardness and thermal conductivity, as well as the lowest wear resistance when compared to other composites. The physical properties of the hybrid composite can be controlled by the host blend, and hence the morphology, and interfacial characteristics.

2020 ◽  
Vol 70 (2) ◽  
pp. 167-180
Author(s):  
Vennapusa Vijaya Bhaskar ◽  
Kolla Srinivas ◽  
Devireddy Siva Bhaskara Rao

AbstractThe present work addresses the physical and mechanical properties of banana and palmyra fiber reinforced epoxy composites with the aim of study on the effect of weight ratio and fiber percentage. The banana and palmyra fibers were arranged with different weight ratios (1:1, 1:3, and 3:1) and then mixed with the epoxy matrix by hand lay-up technique to prepare the hybrid composites with various fiber percentages (10%, 20%, 30% and 40%). The properties are measured by testing its density, water absorption, tensile strength, impact strength, hardness and flexural strength and compared. From the results, it was indicated that addition of banana and palmyra fiber in to the matrix material up to 30% by fiber percentage results in increasing the mechanical properties and slightly variation with weight ratios. Interfacial analysis of the hybrid composites were also observed by using scanning electron microscope (SEM) to study the internal failures and micro structure of the tested specimen.


: In general the natural fibers are taken out from the sources of animals and plants. In recent days the natural fibers play an important role in engineering applications like automotive, aerospace and marine industries due to abundant availability, less in cost and zero percentage environment harmless in nature. In this paper the investigation of various mechanical properties of hybrid reinforced composite (Palm fiber Basalt S-glass fiber) is been done on the fabricated samples. The different mechanical property includes tensile, hardness and impact tests etc... The fabrication comprises three layers of Palm and Basalt fibers outer laminated by two layers of S-glass fibers using injection molding method. From the various testing and investigation against the test sample it is been concluded that the fibers in the hybrid set took a major role in determining the important mechanical properties. Thus the fibers present in the hybrid composite increases the strength, stiffness and weight ratio of the composite materials. The various forms and structural analysis of the hybrid composite material are processed by using scanning electron microscope for attaining the better results and application basis


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
B. R. Senthil Kumar ◽  
M. Thiagarajan ◽  
K. Chandrasekaran

This work has investigated to find the influence of silicate on the wear behavior of LM 24/4 wt.% fly ash hybrid composite. The investigation reveals the effectiveness of incorporation of silicate in the composite for gaining wear reduction. Silicate particles with fly ash materials were incorporated into aluminum alloy matrix to accomplish reduction in wear resistance and improve the mechanical properties. The LM24/silicate/fly ash hybrid composite was prepared with 4 wt.% fly ash particles with 4, 8, 12, 16, 20, and 24 wt.% of silicate using vortex technique. Tribological properties were evaluated under different load (15, 30, 45, 60, and 75 N); sliding velocity (0.75, 1.5, 2.25, and 3 m/sec) condition using pin on disc apparatus and mechanical properties like density, hardness, impact strength, and tensile strength of composites were investigated. In addition, the machining of the aluminum hybrid composite was studied using Taguchi L9orthogonal array with analysis of variance. The properties of the hybrid composites containing 24 wt.% silicates exhibit the superior wear resistance and mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7431
Author(s):  
Tomasz Klepka ◽  
Beata Podkościelna ◽  
Dariusz Czerwiński ◽  
Bronisław Samujło

This paper presents the synthesis and physicochemical characterization of a new hybrid composite. Its main goals are evaluating the structure and studying the thermal and mechanical properties of the crosslinked polymeric materials based on varying chemical properties of the compounds. As an organic crosslinking monomer, bisphenol A glycerolate diacrylate (BPA.GDA) was used. Trimethoxyvinylsilane (TMVS) and N-vinyl-2-pyrrolidone (NVP) were used as comonomers and active diluents. The inorganic fraction was the silica in the form of nanoparticles (NANOSiO2). The hybrid composites were obtained by the bulk polymerization method using the UV initiator Irqacure 651 with a constant weight ratio of the tetrafunctional monomer BPA.GDA to TMVS or NVP (7:3 wt.%) and different wt.% of silica nanoparticles (0, 1, 3%). The proper course of polymerization was confirmed by the ATR/FTIR spectroscopy and SEM EDAX analysis. In the composites spectra the signals correspond to the C=O groups from NVP at 1672–1675 cm−1, and the vibrations of Si–O–C and Si–O–Si groups at 1053–1100 cm−1 from TMVS and NANOSiO2 are visible. Thermal stabilities of the obtained composites were studied by a differential scanning calorimetry DSC. Compared to NVP the samples with TMVS degraded in one stage (422.6–425.3 °C). The NVP-derived materials decomposed in three stages (three endothermic effects on the DSC curves). The addition of NANOSiO2 increases the temperature of composites maximum degradation insignificantly. Additionally, the Shore D hardness test was carried out with original metrological measurements of changes in diameter after indentation in relation to the type of material. The accuracy analysis of the obtained test results was based on a comparative analysis of graphical curves obtained from experimental tests. The values of the changes course of similarity in the examined factors, represented by those of characteristic coefficients were determined based on the Fréchet’s theory.


2021 ◽  
pp. 50533
Author(s):  
Yasmine N. Baghdadi ◽  
Lucia Youssef ◽  
Kamal Bouhadir ◽  
Mohammad Harb ◽  
Samir Mustapha ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4169
Author(s):  
Marcel Zambrzycki ◽  
Krystian Sokolowski ◽  
Maciej Gubernat ◽  
Aneta Fraczek-Szczypta

In this work, we present a comparative study of the impact of secondary carbon nanofillers on the electrical and thermal conductivity, thermal stability, and mechanical properties of hybrid conductive polymer composites (CPC) based on high loadings of synthetic graphite and epoxy resin. Two different carbon nanofillers were chosen for the investigation—low-cost multi-layered graphene nanoplatelets (GN) and carbon black (CB), which were aimed at improving the overall performance of composites. The samples were obtained by a simple, inexpensive, and effective compression molding technique, and were investigated by the means of, i.a., scanning electron microscopy, Raman spectroscopy, electrical conductivity measurements, laser flash analysis, and thermogravimetry. The tests performed revealed that, due to the exceptional electronic transport properties of GN, its relatively low specific surface area, good aspect ratio, and nanometric sizes of particles, a notable improvement in the overall characteristics of the composites (best results for 4 wt % of GN; σ = 266.7 S cm−1; λ = 40.6 W mK−1; fl. strength = 40.1 MPa). In turn, the addition of CB resulted in a limited improvement in mechanical properties, and a deterioration in electrical and thermal properties, mainly due to the too high specific surface area of this nanofiller. The results obtained were compared with US Department of Energy recommendations regarding properties of materials for bipolar plates in fuel cells. As shown, the materials developed significantly exceed the recommended values of the majority of the most important parameters, indicating high potential application of the composites obtained.


2021 ◽  
Author(s):  
Yue Zhu ◽  
Qingyu Peng ◽  
Haowen Zheng ◽  
Fuhua Xue ◽  
Pengyang Li ◽  
...  

With the development of multifunction and miniaturization in modern electronics, polymeric films with strong mechanical performance and high thermal conductivity are urgently needed. Two-dimensional transition metal carbides and nitrides (MXenes)...


Sign in / Sign up

Export Citation Format

Share Document