Strength Prediction and Test of FRP Composite Laminates with Central Hole

2011 ◽  
Vol 217-218 ◽  
pp. 1669-1672
Author(s):  
Jian Yu Zhang ◽  
Chong Qiang Sun ◽  
Bin Jun Fei

In order to research the static properties of FRP composite laminates with central hole, the numerical simulation and experimental method are used. The simulation is achieved by the finite element analysis tool with the progressive damage method. During the simulation, the Hashion failure criteria and the selective completed material degradation models are adopted. Proper specimens of FRP composite laminates with central hole are prepared and the static tests are carried out. The results indicate that progressive damage method can simulate the failure process of FRP laminates with central hole and the simulative results agree well with the experimental data.

2011 ◽  
Vol 194-196 ◽  
pp. 1581-1585
Author(s):  
Chong Qiang Sun ◽  
Jian Yu Zhang ◽  
Bin Jun Fei

Progressive damage method is adopted to predict the static mechanics properties of FRP composite laminates with central hole. Progressive damage models with three different 3D failure criteria and material degradation models are established and analyzed via a user defined subroutine embedded into the general FEA package. Numerical results indicate that all the three 3D failure criteria can simulate the failure process of FRP laminates with central hole, but the final failure load is different. Degradation coefficient and the finite element mesh have significant effect on the numerical results.


2014 ◽  
Vol 936 ◽  
pp. 43-52
Author(s):  
Xiang Hong Kong ◽  
Zhi Jin Wang

Experiment and Finite element analysis were used to study the strengths of composite laminates with and without holes. Finite element progressive damage analysis with Tsai-Wu criteria was applied to calculate the compressive residual strength of composite laminate. Abaqus and its user subroutine USDFLD were used for the finite element analysis. Tsai-Wu criteria as the failure criteria was realized in USDFLD as a Fortran program segment, and the stiffness degradation for the damaged elements was also realized by USDFLD. Analytic results gotten by progressive damage method were very close to the experimental results.


2020 ◽  
Vol 980 ◽  
pp. 107-116
Author(s):  
Hong Wang Zhao ◽  
Xiao Gang Liu ◽  
Abraham Kent

This paper expounds the basic theory of composite mechanics, and discusses the damage forms, damage analysis and failure criteria of composite materials. Then, the basic mechanical properties of unidirectional CFRP laminates with different layers, including modulus of elasticity, strength and so on, were obtained through a large number of experiments. Based on the experimental data, the relationship between the number of layers and the properties of materials was studied. The brittle fracture process of CFRP laminates was simulated by finite element analysis based on progressive damage model and compared with the force-displacement curves obtained by experiments. The validity of progressive damage model was proved.


2010 ◽  
Vol 123-125 ◽  
pp. 579-582
Author(s):  
Hossein Hosseini-Toudeshky ◽  
F. Mazaheri Torei ◽  
Bijan Mohammadi

The aim of the present study is evaluation of the element-free Galerkin method (EFGM) in progressive damage analyses of composite laminates. For this purpose, an orthotropic EFGM formulation is employed which is based on the first-order shear deformation theory (FSDT). In progressive damage analysis, the Hashin’s type failure criteria and their degradation rules are used. The obtained damage results from EFGM are compared with the experimental and FEM results.


2021 ◽  
Author(s):  
ALLYSON FONTES ◽  
FARJAD SHADMEHRI

Fiber-reinforced polymer (FRP) composite materials are increasingly used in engineering applications. However, an investigation into the precision of conventional failure criteria, known as the World-Wide Failure Exercise (WWFEI), revealed that current theories remain unable to predict failure within an acceptable degree of accuracy. Deep Neural Networks (DNN) are emerging as an alternate and time-efficient technique for predicting the failure strength of FRP composite materials. The present study examined the applicability of DNNs as a tool for creating a data-driven failure model for composite materials. The experimental failure data presented in the WWFE-I were used to develop the datadriven model. A fully connected DNN with 23 input units and 1 output unit trained with a constant learning rate (α=0.0001). The network’s inputs described the laminates and the loading conditions applied to the test specimen, whereas the output was the length of the failure vector (L=(σx+σy+τxy)0.5). The DNN’s performance was evaluated using the mean squared error on a subset of the experimental data unseen during training. Network configurations with a varying number of hidden layers and units per layer were evaluated. The DNN with 3 hidden layers and 20 units per hidden layer performed the best. In fact, the network’s predictions show good agreement with the experimental results. The failure boundaries generated by the DNN were compared to three conventional theories: the Tsai-Wu, Cuntze, and Puck theory. The DNN’s failure envelopes were found to fit the experimental data more closely than the above-mentioned theories. In sum, the DNN’s ability to fit higher-order polynomials to data separates it from conventional failure criteria. This characteristic makes DNNs an effective method for predicting the failure strength of composite laminates.


1988 ◽  
Vol 12 (3) ◽  
pp. 133-137 ◽  
Author(s):  
P. LABOSSIERE ◽  
K.W. NEALE ◽  
K. NEGLO

Finite element calculations are carried out to simulate progressive damage in fibre-reinforced composite laminates. Each element is taken to be linearly elastic up to failure, which is assumed to be caused by either fibre breakage, matrix rupture or delamination. These damage modes are modelled by incorporating Lee’s [2] failure criteria in the analysis. Behaviour subsequent to each type of damage is modelled by suitably modifying the element properties in the failure zones. Numerical results are present for the progressive failure of a four-layer symmetric cross-ply laminate with a circular hole.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5606
Author(s):  
Guoqiang Gao ◽  
Luling An ◽  
Ioannis K. Giannopoulos ◽  
Ning Han ◽  
Ende Ge ◽  
...  

Finite element numerical progressive damage modelling and simulations applied to the strength prediction of airframe bolted joints on composite laminates can lead to shorter and more efficient product cycles in terms of design, analysis and certification, while benefiting the economic manufacturing of composite structures. In the study herein, experimental bolted joint bearing tests were carried out to study the strength and failure modes of fastened composite plates under static tensile loads. The experimental results were subsequently benchmarked against various progressive damage numerical modelling simulations where the effects of different failure criteria, damage variables and subroutines were considered. Evidence was produced that indicated that both the accuracy of the simulation results and the speed of calculation were affected by the choice of user input and numerical scheme.


Sign in / Sign up

Export Citation Format

Share Document