Air Permeability of Concrete by Thenoz Method

2011 ◽  
Vol 224 ◽  
pp. 132-136 ◽  
Author(s):  
Valdir Moraes Pereira ◽  
Gladis Camarini

Permeability of cement-based materials is the principal factor that provides its durability. Thus, several methodologies have been developed for measuring this property. Discrepancies in results can be generated due to large number of methods, mathematics equations and methodologies employed. Thenoz method is one method developed for measuring air permeability of porous media and have demonstrated good and satisfactory results, in accordance to several scientific researches. The aim of this work was to study the flow mechanism in a porous media, in particular a concrete media, evaluating Reynolds number and flow velocity of air outflow occurred when Thenoz method was employed to measure concrete air permeability. The Reynolds number results showed that outflow regime occurs in laminar form and validate the hypothesis to confirm the model. Tests were performed to verify the veracity of results obtained in accordance this methodology. Results have shown that air permeability measured by Thenoz method is a good test to evaluate concrete porosity.

2021 ◽  
Author(s):  
Hadi Norouzi ◽  
Jalal Bazargan ◽  
Faezah Azhang ◽  
Rana Nasiri

Abstract The study of the steady and unsteady flow through porous media and the interactions between fluids and particles is of utmost importance. In the present study, binomial and trinomial equations to calculate the changes in hydraulic gradient (i) in terms of flow velocity (V) were studied in the steady and unsteady flow conditions, respectively. According to previous studies, the calculation of drag coefficient (Cd) and consequently, drag force (Fd) is a function of coefficient of friction (f). Using Darcy-Weisbach equations in pipes, the hydraulic gradient equations in terms of flow velocity in the steady and unsteady flow conditions, and the analytical equations proposed by Ahmed and Sunada in calculation of the coefficients a and b of the binomial equation and the friction coefficient (f) equation in terms of the Reynolds number (Re) in the porous media, equations were presented for calculation of the friction coefficient in terms of the Reynolds number in the steady and unsteady flow conditions in 1D (one-dimensional) confined porous media. Comparison of experimental results with the results of the proposed equation in estimation of the drag coefficient in the present study confirmed the high accuracy and efficiency of the equations. The mean relative error (MRE) between the computational (using the proposed equations in the present study) and observational (direct use of experimental data) friction coefficient for small, medium and large grading in the steady flow conditions was equal to 1.913, 3.614 and 3.322%, respectively. In the unsteady flow condition, the corresponding values of 7.806, 14.106 and 10.506 % were obtained, respectively.


2021 ◽  
Author(s):  
Hadi Norouzi ◽  
Jalal Bazargan ◽  
Faezah Azhang ◽  
Rana Nasiri

Abstract The study of the steady and unsteady flow through porous media and the interactions between fluids and particles is of utmost importance. In the present study, binomial and trinomial equations to calculate the changes in hydraulic gradient (i) in terms of flow velocity (V) were studied in the steady and unsteady flow conditions, respectively. According to previous studies, the calculation of drag coefficient (Cd) and consequently, drag force (Fd) is a function of coefficient of friction (f). Using Darcy-Weisbach equations in pipes, the hydraulic gradient equations in terms of flow velocity in the steady and unsteady flow conditions, and the analytical equations proposed by Ahmed and Sunada in calculation of the coefficients a and b of the binomial equation and the friction coefficient (f) equation in terms of the Reynolds number (Re) in the porous media, equations were presented for calculation of the friction coefficient in terms of the Reynolds number in the steady and unsteady flow conditions in 1D (one-dimensional) confined porous media. Comparison of experimental results with the results of the proposed equation in estimation of the drag coefficient in the present study confirmed the high accuracy and efficiency of the equations. The mean relative error (MRE) between the computational (using the proposed equations in the present study) and observational (direct use of experimental data) friction coefficient for small, medium and large grading in the steady flow conditions was equal to 1.913, 3.614 and 3.322%, respectively. In the unsteady flow condition, the corresponding values of 7.806, 14.106 and 10.506 % were obtained, respectively.


2007 ◽  
Author(s):  
Jialu Wang ◽  
Shiyi Yuan ◽  
Pingping Shen ◽  
Taixian Zhong ◽  
Xu Jia

Author(s):  
Tirivanhu Chinyoka ◽  
Daniel Oluwole Makinde

Purpose – The purpose of this paper is to examine the unsteady pressure-driven flow of a reactive third-grade non-Newtonian fluid in a channel filled with a porous medium. The flow is subjected to buoyancy, suction/injection asymmetrical and convective boundary conditions. Design/methodology/approach – The authors assume that exothermic chemical reactions take place within the flow system and that the asymmetric convective heat exchange with the ambient at the surfaces follow Newton’s law of cooling. The authors also assume unidirectional suction injection flow of uniform strength across the channel. The flow system is modeled via coupled non-linear partial differential equations derived from conservation laws of physics. The flow velocity and temperature are obtained by solving the governing equations numerically using semi-implicit finite difference methods. Findings – The authors present the results graphically and draw qualitative and quantitative observations and conclusions with respect to various parameters embedded in the problem. In particular the authors make observations regarding the effects of bouyancy, convective boundary conditions, suction/injection, non-Newtonian character and reaction strength on the flow velocity, temperature, wall shear stress and wall heat transfer. Originality/value – The combined fluid dynamical, porous media and heat transfer effects investigated in this paper have to the authors’ knowledge not been studied. Such fluid dynamical problems find important application in petroleum recovery.


Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


Author(s):  
Hamed Mahdipanah ◽  
Askari Tashakori ◽  
Samad Emamgholizadeh ◽  
Eisa Maroufpoor

Abstract Dispersivity is a measurable parameter in soil porous media that is used for studying the transport of contaminants to groundwater. The value of this parameter depends on various factors, including the kind of porous media (homogeneous or heterogeneous), flow velocity, initial contaminant concentration, travel distance, and sampling method. A physical model with dimensions of 0.10 m in width, 0.80 m in height, and 1.10 m in length was constructed to investigate the effects of these parameters on the dispersivity value. The stratified soil consisted of three 20-cm-thick layers containing fine-grained, medium-grained, and coarse-grained soil. Sodium chloride solutions with electrical conductivity values of 10, 14, and 19 dS/m were used as the contaminants. Flow was forced through the layered heterogeneous soils at three discharge velocities of 17.58, 22.02, and 26.18 × 10−5 m/s. The point and mixed sampling methods were used. The results indicated that the soil dispersivity values in the layered heterogeneous soils and homogeneous soil were influenced by contaminant concentration, flow velocity, and travel distance. Moreover, the dispersivity values obtained by point sampling were lower than those obtained using the mixed sampling method, and the mean dispersivity value in the layered heterogeneous soils was lower than that of the homogeneous soil.


2019 ◽  
Vol 7 (9) ◽  
pp. 291 ◽  
Author(s):  
Xiang Cui ◽  
Changqi Zhu ◽  
Mingjian Hu ◽  
Xinzhi Wang ◽  
Haifeng Liu

Dispersion characteristics are important factors affecting groundwater solute transport in porous media. In marine environments, solute dispersion leads to the formation of freshwater aquifers under islands. In this study, a series of model tests were designed to explore the relationship between the dispersion characteristics of solute in calcareous sands and the particle size, degree of compactness, and gradation of porous media, with a discussion of the types of dispersion mechanisms in coral sands. It was found that the particle size of coral sands was an important parameter affecting the dispersion coefficient, with the dispersion coefficient increasing with particle size. Gradation was also an important factor affecting the dispersion coefficient of coral sands, with the dispersion coefficient increasing with increasing d10. The dispersion coefficient of coral sands decreased approximately linearly with increasing compactness. The rate of decrease was −0.7244 for single-grained coral sands of particle size 0.25–0.5 mm. When the solute concentrations and particle sizes increased, the limiting concentration gradients at equilibrium decreased. In this study, based on the relative weights of molecular diffusion versus mechanical dispersion under different flow velocity conditions, the dispersion mechanisms were classified into five types, and for each type, a corresponding flow velocity limit was derived.


2010 ◽  
Vol 5 (3) ◽  
pp. 155892501000500 ◽  
Author(s):  
Rahul Vallabh ◽  
Pamela Banks-Lee ◽  
Abdel-Fattah Seyam

A method to determine tortuosity in a fibrous porous medium is proposed. A new approach for sample preparation and testing has been followed to establish a relationship between air permeability and fiberweb thickness which formed the basis for the determination of tortuosity in fibrous porous media. An empirical relationship between tortuosity and fiberweb structural properties including porosity, fiber diameter and fiberweb thickness has been proposed unlike the models in the literature which have expressed tortuosity as a function of porosity only. Transverse air flow through a fibrous porous media increasingly becomes less tortuous with increasing porosity, with the value of tortuosity approaching 1 at upper limits of porosity. Tortuosity also decreased with increase in fiber diameter whereas increase in fiberweb thickness resulted in the increase in tortuosity within the range of fiberweb thickness tested.


Sign in / Sign up

Export Citation Format

Share Document