Harvesting Microalgae Biomass by Instant Dissolved Air Flotation at Batch Scale

2011 ◽  
Vol 236-238 ◽  
pp. 146-150 ◽  
Author(s):  
Zhe Lin ◽  
Ya Li Kuang ◽  
Yun Wei Leng

A instant air dissolution flotation method was used to harvest microalgal cells from culture to evaluate its feasibility. Effects of microalgae cell density, coagulant dosage, flocculant dosage, surfactant dosage and duration of air dissolution on recovery rate were studied by orthogonal experiment. The results show that the optimal recovery rate reaches 89.57% under one of the test combination conditions. The factors can be ordered by coagulant dosage, cell density, flocculant dosage, air dissolution duration and surfactant dosage according to their effect degree on recovery rate, and coagulant dosage, cell density were the marked factors when confidence level was given as 90%. Under test conditions, recovery rate rides up when the coagulant dosage increase, and the optimal dose of flocculant appears at 20 mg·L-1. As seawater medium contains salts which own the similar fuction like surfactant, surfactant do not affect the recovery rate significantly. The time of air dissolution should not be too long, a 2-second duration is enough to providing dissolved air, and the recovery rate may reduce because of the disturbance induced by the redundant air.

REAKTOR ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 43
Author(s):  
I Nyoman Widiasa ◽  
A A Susanto ◽  
B Budiyono

Abstrak Mikroalga merupakan mikroorganisme fotosintetik prokariotik atau eukariotik yang dapat tumbuh dengan cepat. Pemanfaatan mikroalga tidak hanya berorientasi sebagai pakan alami untuk akuakultur, tetapi terus berkembang untuk bahan baku produksi pakan ternak, pigmen warna, bahan farmasi (β-carotene, antibiotik, asam lemak omega-3), bahan kosmetik, pupuk organik, dan biofuel (biodiesel, bioetanol, biogas, dan biohidrogen. Studi ini bertujuan untuk menginvestigasi kombinasi ultrafiltrasi (UF) – dissolved air flotation (DAF) untuk pemekatan mikroalga skala laboratorium. Hasil penelitian menunjukkan bahwa penurunan fluks membran UF secara tajam sebagai akibat dari deposisi sel mikroalga terjadi pada 20 menit pertama proses filtrasi. Backwash pada interval 20 menit selama 10 detik dengan tekanan 1 bar memberikan pengendalian fouling yang efektif dalam nilai kestabilan fluks yang layak. Membran UF yang digunakan dapat memberikan selektivitas pemisahan biomassa mikroalga ~ 100%. Kualitas permeat sangat stabil, yaitu kekeruhan < 0,5 NTU, kandungan organik < 10 mg/L, dan warna < 10 PCU. Lebih lanjut, pemekatan retentat membran dengan DAF pada tekanan saturasi 6 bar dapat menghasilkan pasta mikroalga dengan konsentrasi 20 g/L. Koagulan PAC perlu ditambahkan kedalam umpan DAF dengan dosis 1,3–1,6 mg PAC/mg padatan tersuspensi.   Kata Kunci: ultrafiltrasi; dissolved air flotation; pemanenan mikroalga; pemekatan mikroalga   Abstract COMBINATION OF Ultrafiltration and Dissolved Air Flotation for Microalgae CONCENTRATION. Microalgae is a prokaryotic photosynthetic microorganism or eukaryotic microorganism  that proliferate rapidly. Cultivation of the microalgae is not only oriented  as natural food for aquacultures, but also developed  for animal food, color pigment, pharmaceutical raw material (β-carotene, antibiotic, fatty acid omega-3), cosmetic raw material, organic fertilizer, and biofuels (biodiesel, bioethanol, biogas, and biohydrogen. This study is aimed to investigate the potential of combination of ultrafiltration (UF) and dissolved air flotation  (DAF) for concentration of microalgae in laboratory scale. The experimental results showed that fluxes of the UF membrane decreased sharply due to deposition of microalgae biomass during first 20 minutes of filtration. Periodically backwash using the UF permeate (backwash  interval = 20 minutes;  backwash duration = 10 seconds;  backwash pressure = 1 bar) gave an effective fouling control to maintain reasonable stable fluxes. In addition,  the UF membrane gave separation of microalgae biomass ~ 100%. Permeate quality is strongly stable in which turbidity < 0.5 NTU, organic content < 10 mg/L, and color < 10 PCU.  Moreover, concentration of the UF retentate by DAF under saturation pressure of 6 bars was able to produced microalgae feedstock having 20 g/L dry microalgae. PAC is required for DAF feed with dosage of 1.3–1.6 mg PAC/mg suspended solids.


2018 ◽  
Author(s):  
◽  
Emmanuel Kweinor Tetteh

Industrial mineral oil wastewater from oil refineries and petrochemical processing poses a major environmental concern. Effluents from these processes is usually poor as it is heavily polluted, thus have high chemical oxygen demand (COD), soap oil and grease (SOG), turbidity, total suspended solids (TSS) amongst others. This wastewater, if discharge without treatment, causes severe pollution, oxygen depletion, and imbalanced ecosystem and human health risks. The main aim of this research was to modify, optimise and evaluate the performance of a continuous process using dissolved air flotation (DAF) pilot to treat wastewater from a local South African oil refinery wastewater treatment plant (WWTP) with the benefit of recovery of the oil from the wastewater. The study evaluated the feasibility of using different acids and coagulants. One factor at time (OFAT) approach was used on the DAF jar tester to identify the most important variables that affects the DAF treatability performance. The factors considered were; pH, flotation time, coagulant dosage, air to water ratio and air saturated pressure. The ranges considered for the factors were pH (4−6), flotation time (5−15 minutes), coagulant dosage (10−50 mg/L), air to water ratio (5–15%) and air saturated pressure (300–500 kPa). The key process operating parameters obtained from the OFAT were optimised using the Box Behnken design (BBD) adapted from response surface methodology (RSM). The BBD used had three levels, three factors and five centre points. This was employed to establish the relationship that existed between the water quality (contaminants) and the key interacting factors of the DAF jar tester, thus employing the most applicable combination of the factors on a continuous DAF pilot plant. The study was configured into two; Acid – Coagulation-DAF (pre-treatment) and Acid –DAF – Coagulation (post treatment). Three acids were investigated for their efficiency in the pre- treatment step, while four cationic inorganic coagulants and three polymeric organic coagulants were used both for the pre and post treatments. The OFAT experiments resulted in more than 75% removal efficiency of COD, SOG, TSS and turbidity. The removal efficiency was obtained at the following optimum values of pH 5, flotation time of 15 minutes at a coagulant dosage of 50 mg/L and an air to water ratio of 10% and finally, air saturated pressure was 350 kPa. On the other hand, BBD results showed 85% treatability performance at a lower coagulant dosage (30–45 mg/L), moderate air saturator pressure (300–425 kPa), and air-water ratio (8–12%) on the batch scale. While on the continuous process, the optimum coagulant dosage was around 100–180 mg/L. From the BBD results, the interacted factors for consideration were the air saturated pressure and coagulant dosage. These factors enhanced process control. The validation of all the response quadratic models were in good standing with the analysis of variance (ANOVA). The experimental results and the predicted models results agreed at 95% confidence level, finally, the models were significant and verified. Comparative studies of the pre and post treatment showed that 1 M H3PO4 was the most effective, economical and environmentally friendly acid to be used for both processes. Two cationic inorganic (alum and ferric chloride) and two polymeric organic (Z553D-PAC and Zetag32-FS/A50) coagulants were found to be effective with remarkable performance to destabilise and neutralise the oil droplets to coalesce larger flocs to enhance the oil-water separation. Far and above, the cationic inorganic coagulants were more cost effective than the polymeric organic coagulants, even though, the inorganic coagulants were cheaper they had higher conductivity (salts), thus raising environmental concerns. In conclusion, the pre-treatment of the DAF process yielded more recovery of water and oil, and hence this step was economically viable. The RSM demonstrated to be more effective and reliable in finding the optimal conditions of the DAF process than the OFAT method. Thus, the RSM offered a better option than the OFAT, because it included both the interactional and individual factors.


2020 ◽  
Vol 42 (11) ◽  
pp. 529-538
Author(s):  
Yeoju Jang ◽  
Jinhong Jung ◽  
Hyangyoun Chang ◽  
Nari Park ◽  
Miratul Maghfiroh ◽  
...  

Objectives : In order to prevent eutrophication and algal blooms, Ministry of Environment in Korea reinforced the effluent standards of wastewater treatment facilities. As a result, many advanced wastewater treatment processes have been implemented nationwide. Current conventional treatment systems have usually been facing high operational costs and large sludge production problems. Therefore, it is essential to develop more economic and efficient process to cope with these issues.Methods : The sedimentation and dissolved air flotation (SeDAF) process has been developed, that integrates sedimentation and dissolved air flotation. Several simulation experiments were carried out to verify and optimize the operation conditions of the SeDAF process. Removal efficiencies of each water quality item and sludge mass balance were analyzed intensively in the SeDAF process using the modified jar-test.Results and Discussion : Removal efficiencies of the SeDAF process were higher and more stable than those of sedimentation process. Several ‘sludge production / coagulant dosage’ ratios were analyzed and the representative value of 4 mg・L-1 as SS / mg・L-1 as Al<sub>2</sub>O<sub>3</sub> was obtained in the SeDAF process. Fractions of suspended solids (SS) and total phosphorus (T-P) in sludge were measured; the ratios of flotation sludge to sedimentation sludge and fractions of flotation sludge in total sludge had their typical convergence ranges for the conditions of optimal coagulant dosage.Conclusions : The ratios or fractions of SS and T-P in sludge could be applied as the evaluation indicators of the SeDAF process. The reduction of coagulant dosage could be corresponded directly to the reduction of sludge production.


2020 ◽  
Vol 42 (11) ◽  
pp. 539-547
Author(s):  
Yeoju Jang ◽  
Jinhong Jung ◽  
Kwangho Ahn ◽  
Hyunman Lim ◽  
Weonjae Kim

Objectives : To prevent eutrophication and algal blooms, Ministry of Environment in Korea has reinforced the effluent standards of wastewater treatment facilities. In the last 20 years, various advanced wastewater treatment processes have been introduced nationwide. The sedimentation・dissolved air flotation (SeDAF) process has been developed for efficient enhanced phosphorus removal in the previous researches. In the study, several factors were reviewed to examine the operation characteristics of the SeDAF process. In particular, the applicability of aluminium/phosphorus (Al/P) and aluminium/turbidity (Al/T) ratios were investigated intensively.Methods : To derive the appropriate operating conditions for the SeDAF process, several sets of lab-scale tests were carried out. For each operating condition, Al/P (Al/T-P), Al/PO<sub>4</sub>3--P, and Al/T (Al/Turbidity) ratios were analyzed, compared and reviewed respectively.Results and Discussion : Al/P ratio was revealed as the most prominent factor in terms of stability and feasibility of operation, and Al/P values of the SeDAF process could achieve lower values than those of other processes in the previous researches.Conclusions : It could be expected that the coagulant dosage decision using Al/P ratio has many advantages to reduce coagulant dosage and to decrease the amount of sludge production in the SeDAF process.


RSC Advances ◽  
2015 ◽  
Vol 5 (111) ◽  
pp. 91776-91784 ◽  
Author(s):  
Akbar Esmaeili ◽  
Elahe Hejazi ◽  
Yasser Vasseghian

This work aims to compare a biosorption method (BM) and a coagulation–dissolved air flotation method (C/DAFM) as inexpensive and effective means of eliminating hexavalent chromium (Cr[vi]) from industrial wastewater.


2001 ◽  
Vol 43 (8) ◽  
pp. 131-137 ◽  
Author(s):  
J. C. Liu ◽  
C. S. Lien

The pretreatment of wastewater from a large-scale bakery was studied. In the coagulation-flocculation reaction, it was found that both alum and FeCl3 were effective in the jar tests. When at coagulant dosage of 90 to 100 mg/l, 55 % of COD and 95 to 100% of SS could be removed. The optimum pH was at 6.0. In addition, the removal of SS was affected by pH more significantly, while the removal of COD was not affected in the pH range of 6.0 to 8.0. In the DAF experiments, 48.6% of COD and 69.8% of SS were removed in 10 min at a pressure of 4 kg/cm2, recycle ratio of 0.3 l/min, and pH of 6.0. Upon the addition of 100 mg/l of alum, the removal efficiency of COD did not increase while SS removal increased to 82.1%. It was found that 5-min flocculation time did improve the COD removal while it had little effect on SS removal. Flocculation for longer than 5 min did not enhance the flotation performance. Similar phenomena were observed when FeCl3 was used as the coagulant, except that flocculation had an insignificant effect on COD and SS removal. It was also found that FeCl3 was relatively more effective than alum. In summary, both coagulation-flocculation and DAF were efficient for the pretreatment. The advantages and disadvantages were discussed.


2021 ◽  
Vol 50 (1) ◽  
pp. 73-83
Author(s):  
Nurafifah Fuad ◽  
Rozita Omar ◽  
Suryani Kamarudin ◽  
Razif Harun ◽  
Idris A. ◽  
...  

The production of high-value bioproducts from microalgae biomass has been widely investigated. However, their production is hindered by the expensive harvesting process. To date, flocculation followed by DAF process has been accepted as one of the affordable harvesting approaches. In this study, the use of DAF technique was attempted to harvest marine microalgae Nannochloropsis sp. Batch DAF harvesting was carried out using fabricated DAF unit equipped with several compartments including separation column, product collecting vessel and rotary skimmer. Tannin-based biopolymer flocculant, AFlok-BP1 at pH 5 with a concentration of 160 mg/L was used to facilitate the flocculation of particles. The effects of different saturator pressure at 1.8, 2, and 2.2 bar were then evaluated at a constant volume of 6 L microalgae culture. The effects of different microalgae culture volumes (6, 8 and 10 L) were also evaluated at a fixed saturator pressure of 2.2 bar. The highest pressure at 2.2 bar yielded the best result with the highest total solid of 3.19 ± 0.01% and a maximum yield of 1.70 ± 0.05 g/g (wet basis). The microalgae concentration was the lowest (0.027 g/L) when 6 L of culture volume was used. However, the values were significantly higher when the culture volume was increased to 8 and 10 L to approximately 0.035 and 0.050 g/L, respectively. As a conclusion, the study provided evidence for the feasibility of DAF technique in harvesting marine microalgae Nannochloropsis sp.


2018 ◽  
Vol 77 (7) ◽  
pp. 1802-1809 ◽  
Author(s):  
Zhuang Tian ◽  
Can Wang ◽  
Min Ji

Abstract Eutrophication of urban rivers has caused severe environmental problems due to the pollution from point and diffuse sources. Although eutrophication can be alleviated by reducing the input to the river system, fast-treating terminal control technologies, especially under emergent situations, should be developed to reduce risks induced by eutrophication. The present study developed an emergency purification device based on dissolved air flotation (DAF) technology. After equipment commissioning and parameter optimization for applications in the field of engineering, the device was found to effectively remove total phosphorus, chlorophyll a, chemical oxygen demand, and turbidity in water by controlling the coagulant dosage and adjusting the gas-liquid mixing pump parameters. Dissolved air in water could enhance dissolved oxygen, and dissolved oxygen in polluted rivers could be raised from 0.2–2 mg/L to 3–3.5 mg/L. Removal of total nitrogen was poor because the majority of nitrogen contents were dissolved. Finally, DAF has been proven to be a promising technology due to its ease of implementation, low equipment investment requirement, and low operation cost.


Sign in / Sign up

Export Citation Format

Share Document