Microwave Preparation of Ionic Liquid Functionalized SBA-15 and its Application in Fabrication of Electrochemical Sensors

2011 ◽  
Vol 239-242 ◽  
pp. 2748-2751
Author(s):  
Peng Hui Zhang ◽  
She Ying Dong ◽  
Ting Lin Huang

Ionic liquid-functionalized SBA-15 (IL-SBA-15) was prepared by cocondensation of functionalized ionic liquid (IL) and tetraethoxysilane. IL was firstly synthesized using microwave and the experimental parameters were optimized. Furthermore, IL-SBA-15 was introduced into the fabrication of electrochemical sensors. It was found that these sensors exhibited good performance to the simultaneous determination of dihydroxybenzene isomers or metal ions. The good sensitivity and stability presented the promising application of IL-SBA-15 in the application of electrochemistry.

Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 517
Author(s):  
Siyamthanda Hope Mnyipika ◽  
Tshimangadzo Saddam Munonde ◽  
Philiswa Nosizo Nomngongo

The rapid detection of trace metals is one of the most important aspect in achieving environmental monitoring and protection. Electrochemical sensors remain a key solution for rapid detection of heavy metals in environmental water matrices. This paper reports the fabrication of an electrochemical sensor obtained by the simultaneous electrodeposition of MnO2 nanoparticles and RGO nanosheets on the surface of a glassy carbon electrode. The successful electrodeposition was confirmed by the enhanced current response on the cyclic voltammograms. The XRD, HR-SEM/EDX, TEM, FTIR, and BET characterization confirmed the successful synthesis of MnO2 nanoparticles, RGO nanosheets, and MnO2@RGO nanocomposite. The electrochemical studies results revealed that MnO2@RGO@GCE nanocomposite considerably improved the current response on the detection of Zn(II), Cd(II) and Cu(II) ions in surface water. These remarkable improvements were due to the interaction between MnO2 nanomaterials and RGO nanosheets. Moreover, the modified sensor electrode portrayed high sensitivity, reproducibility, and stability on the simultaneous determination of Zn(II), Cd(II), and Cu(II) ions. The detection limits of (S/N = 3) ranged from 0.002–0.015 μg L−1 for the simultaneous detection of Zn(II), Cd(II), and Cu(II) ions. The results show that MnO2@RGO nanocomposite can be successfully used for the early detection of heavy metals with higher sensitivity in water sample analysis.


2011 ◽  
Vol 88 (1) ◽  
pp. 292-296 ◽  
Author(s):  
Caihong Bu ◽  
Xiuhui Liu ◽  
Yijun Zhang ◽  
Li Li ◽  
Xibin Zhou ◽  
...  

2014 ◽  
Vol 6 (21) ◽  
pp. 8744-8751 ◽  
Author(s):  
Zhihong Huang ◽  
Xiaolu Meng ◽  
Ming Liu ◽  
Suli Wang

This paper describes a hydroxyl functionalized ionic liquid (FIL), 1-hydroxyl hexyl-3-methylimidazoliumbis[(trifluoromethyl)sulfonyl] imide [HHyMIMTf2N] used for the extraction and preconcentration of 7 herbicides from water samples by ultrasound-assisted surfactant-enhanced emulsification microextraction.


1999 ◽  
Vol 382 (3) ◽  
pp. 291-299 ◽  
Author(s):  
Maria Concetta Bruzzoniti ◽  
Edoardo Mentasti ◽  
Corrado Sarzanini

Sign in / Sign up

Export Citation Format

Share Document